

--- T-H-I-N-X ---

A „Thing Server” concept for the Internet of

Things (IoT)

Abstract resource nodes model, abstract architecture model,

concrete implementation mappings and IoT ecosystem usage

patterns

White Paper

Version 1.5 (May 2015)

ANDREAS RIEGG

© 2014 – 2015 BY ANDREAS RIEGG [BRAIN (AT) T-H-I-N-X.NET]

WebIOPi © 2012 - 2015 BY ERIC PTAK [TROUCH (AT) TROUCH.COM]

 2
T-H-I-N-X - “Thing Server” concept 2

Change log

Version Date Author Changes

1.0 May 21st, 2014 Andreas Riegg Initial version

1.1 July 15th, 2014 Andreas Riegg Added content and modified model

1.2 Dec 22nd, 2014 Andreas Riegg Completed HTTP/REST Mapping, added chapter on IoT

ecosystems, added reference to RDF/OWL, changed overall

chapter structure

1.3 Feb 4th, 2015 Andreas Riegg Added chapter on IoT architectures and references to

WebIOPi architecture and Weaved add-on, updated chapter

sequence, some typos and small text updates and additions

1.4 Mar 20th, 2015 Andreas Riegg Added <property> to the TouchPoint resource node and

updated REST mapping and JSON mapping for that, shortened

{val,ue(s)} to {value}. Added Swagger spec for API. Unified API

proposals for /run and /configure. Added Swagger UI and

swagger.ed screenshots.

1.5 May 11th, 2015 Andreas Riegg Renamed <property> to <aspect> due to work with RDF to

avoid confusion with RDF modelling “properties”. Added

geometrical, chemical and biological sensors to concept and

REST mapping. Renamed <physicalUnit> to <unit> to be

consistent with more types of sensors. Added references to

more M2M protocols.

 3
T-H-I-N-X - “Thing Server” concept 3

Content

Change log .. 2

Licensing & Copyright ... 6

Preface .. 6

Physical Architecture .. 7

Abstract Resource Nodes Domain Model .. 9

Overview ... 9

ServicePoint .. 12

SP_Relations ... 13

SP_Configuration .. 13

SP_Features .. 13

Device ... 15

D_Relations ... 15

D_Configuration ... 16

D_Features .. 16

TouchPoint .. 16

TP_Configuration .. 18

TP_Features .. 19

Alias .. 20

Extension .. 21

Controller .. 22

C_Relations ... 22

C_Configuration .. 23

C_Features .. 23

Generic Architecture Models for “Thing-Server” and “Thing-Clients” Infrastructures .. 24

Basic/single-tier implementation architecture .. 24

2-tier implementation architecture .. 25

3-tier implementation architecture .. 26

Basic/single-tier implementation architecture with security and device management extensions 28

2-tier implementation architecture with security and device management extensions 30

2-tier implementation architecture for WebIOPi ... 30

Positioning the IoT Model in the Landscape of an API-centric Digital Economy .. 33

Context ... 33

RDF/OWL core .. 33

JSON rendering ... 34

 4
T-H-I-N-X - “Thing Server” concept 4

XML rendering .. 34

HTTP/CoAP REST API .. 35

SOAP API ... 35

WebSocket API ... 35

MQTT API .. 35

Other candidate IoT API protocols and payload rendering options ... 35

IoT Ecosystems and Consortiums ... 36

IoT Architecture Patterns ... 36

Formalizing the Model with RDF/OWL ... 37

THINX HTTP/CoAP REST API Mapping .. 38

Overview ... 38

Basic mapping concepts and main resource node path ... 38

API version indicator ... 38

Device and {devicename} ... 39

TouchPoint and {category} ... 39

TouchPoint and {aspect} ... 39

TouchPoint and {channel} .. 41

ServicePoint .. 42

X_Relations ... 43

X_Configuration .. 43

Creating and destroying a Device at runtime ... 46

X_Features .. 46

Extension .. 47

Controller .. 48

Alias .. 48

Result and payload type enforcement ... 49

Error and exception handling ... 49

Additional resources ... 49

Swagger Specification of the REST API ... 49

JSON mapping and serialization ... 72

JSON instance ... 72

JSON schema .. 77

WebIOPi REST API mapping and Python implementation for HTTP and CoAP .. 78

Overview ... 78

Mapping concepts .. 78

Resources .. 80

 5
T-H-I-N-X - “Thing Server” concept 5

XML mapping and serialization .. 81

XML instance .. 81

XML schema .. 81

WebSockets API usage pattern... 82

SOAP API usage pattern .. 83

MQTT API usage pattern .. 84

Relation to openHAB, eclipse smarthome and iot.eclipse.org ... 86

openHAB ... 86

eclipse smarthome ... 86

iot.eclipse.org ... 86

Relation to IoT targeting public (industrial) initiatives ... 87

Initiative EEBUS... 87

industrial internet CONSORTIUM ... 87

Industrie 4.0 .. 87

ALLSEEN ALLIANCE .. 87

Relation to XPath .. 88

Relation to OData ... 89

Appendices ... 90

References .. 91

 6
T-H-I-N-X - “Thing Server” concept 6

Licensing & Copyright

This paper is ruled by the following Copyright statement:

T-H-I-N-X by Andreas Riegg is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License.

The source code in this paper is ruled by the following Copyright statement:

Copyright © 2014 - 2015 Andreas Riegg

WebIOPi concepts and implementation Copyright © 2012 - 2015 Eric Ptak

Licensed under the Apache License, Version 2.

 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

Preface

This paper is derived from ideas introduced by WebIOPi from Eric Ptak [WEBIOPI_2014]. It extends those ideas

and abstracts them to a concept at a higher level of generalization. Parts of this work are also inspired by the PhD

thesis of Dominique Guinard [GUIN_2011]. Basic concepts of the RESTful concept are described in the PhD thesis

of Roy Fielding [FIELD_2000]. Some concepts are similar to the Device Tree [DTREE_2014] concept (nodes and sub

nodes plus attached attributes) but also at a much higher abstraction level and far away from all the hardware

implementation details covered by Device Tree. It’s much more an outside consumer’s view towards hardware.

Citation in this white paper is simplified compared to scientific papers. To avoid cluttering the text with inline

citations you will find all interesting references just as a link list in the “References” chapter.

Text in bold italics is preliminary and to be done or to be completed.

 7
T-H-I-N-X - “Thing Server” concept 7

Physical Architecture

The generic physical architecture consists of a “thing” that spans a bridge between the cyber world (aka

“Internet”) and the physical world (aka “Reality”). This pattern is also called a “Cyber-Physical System”. The

“Cyber World” and the “Physical World” are tightly connected:

• Changes in the physical world (e.g. a rising temperature) are mirrored into the cyber world (e.g. the new

temperature is displayed on a web page instantly),

• and … vice versa … some action in the cyber world (e.g. a button “ON” is pressed within a mobile app) leads to

a reaction in the real world (e.g. a light goes on).

More technically, this “Thing” Server concept looks like in the following picture:

The connection to the cyber world on the left most part of the picture is typically implemented using standard

Web-Technology like Wifi/Ethernet and the TCP/IP protocol stack, but much more technical possibilities exist

especially in situations where very low energy consumption is required. The processing required at the cyber

world communication endpoint in the left part of the picture is done by some kind of controller. The technical

implementation of this controller ranges from very small one-chip microcontrollers to full-size data center

machines but this does not matter with respect to the model explained here.

The connection to the physical world on the right most part of the picture is realized by

• Sensors that touch the real world in some way and measure any effects reaching from simple things like

temperature and pressure up to complex electromagnetic wave patterns and even biological indicators.

• Actors that touch the real world in some other way and have the ability to influence any effect reaching from

switching an electrical value from being low to high up to sending complex electromagnetic wave patterns.

Some touch points are mainly unidirectional (e.g. most sensors), some others are bi-directional (e.g. most basic

digital I/O ports).

To summarize, inside the “Thing” Server are three main parts that play an important role in the resources model:

• The Controller that realizes the complete communication endpoint to and from the cyber world; it also

controls the devices below and has the ability to be the runtime platform for additional executable “Thing”

features.

• A number of Touch Points that implement the concrete connection to the physical world along with the

effects that they tamper.

 8
T-H-I-N-X - “Thing Server” concept 8

• And a set of Devices that transform effects captured at the Touch Points into some digital representation and

vice versa.

Typically, one single Thing Server has one controller, some devices and more touch points than devices. If a device

is connected to a set of touch points handling the same effect (e.g. a number of analog I/O ports) this is often

implemented by calling this “channels”.

In order to provide ways of well-defined security at the cyber world endpoint, some kind of authentication,

authorization and very often also encryption is used. This is typically implemented as a part of the controller

functionality.

The following picture shows a concrete example of a Thing Server realized with a Raspberry Pi computer

[RASP_2014], a breadboard, some sensors and a wired network connection.

 9
T-H-I-N-X - “Thing Server” concept 9

Abstract Resource Nodes Domain Model

Overview

Transforming the physical architecture of the previous chapter into an abstract resource node domain model

results in the following picture:

The big rectangles represent the primary resource “nodes” of the model. The main information and influence

stream is simply abstracted to the primary logical node chain

ServicePoint <-> Device <-> TouchPoint

that is marked by the dark link in the picture above. This means that there is an “influence” flow from the

ServicePoint via the Devices to the TouchPoints and also in the backwards direction.

The small rectangles attached to the primary nodes represent separated properties of them. This separation will

be explained a bit later.

ServicePoint

The node ServicePoint summarizes all aspects that have to do with the reachability of the Things-Server from the

cyberspace. You can look at the ServicePoint as being the out- and inbound facade of the Things-Server towards

cyberspace. However, this facade is a logical construct and has nothing to do with the internal implementation or

 10
T-H-I-N-X - “Thing Server” concept 10

runtime architecture of this interface. But it is assumed that all communication that touches the Things-Server is

managed through this node.

TouchPoint

A TouchPoint is, as its name implies, the point where the Things-Server has any kind of connection to the physical

(real) world. At the very basic level this consists of a real atomic connection where some material of the Things-

Server has a junction to any other material of the real world. If the “signal” or “force” flow along this junction is

outbound, this is called an actor, if the flow is inbound, this is called a sensor.

Device

Devices are nodes that implement technically the information link between the TouchPoints and the

ServicePoints. In order to do this they realize the “signal” transformation between the physical world and the

cyber world. As the cyber world consists logically only of digital information and the physical world only contains

physical effects, the Devices are the place where the conversion between those two worlds takes place.

Technically spoken this is done at the very basic layer via

• digital-to-analog (DAC) and analog-to-digital (ADC) conversions and

• hardware elements that translate physical effects into the change of an electrical voltage and/or current and

vice versa.

In real implementations often the TouchPoints are an intrinsic hardware feature of the devices (e.g. the case of a

temperature sensor chip is the place where the environment temperature gets being touched and measured).

However, in the logical model discussed here this does not play any role as chips exist that sense more than one

physical effect in parallel (e.g. the Bosch pressure sensors that also measure temperature) and the logical model

wants to see this as two separate influence streams to become independent from any concrete chip

implementations. And, this also helps in cases where one single device (chip) has a big set of different

TouchPoints like a complete microcontroller SoC with its bunch of native analog and digital I/O channels.

The three main nodes are accompanied by three assisting nodes. Their purpose is to be the anchor for additional

aspects of the resource model that lie outside the main influence flow but still play an important role in the

overall model.

Alias

Sometimes the designer of things wants to hide (at least optional) some of the complex technical details of the

internal thing structure. This can be achieved by using some kind of “alias” (abbreviation) concepts that allow

building a logical simple facade interface.

Extension

Sometimes it is necessary to have some additional functionality implemented in the thing to allow local

processing. This avoids time- and energy-consuming round-trips from the thing back and forth to the cyber world

(e.g. some kind of central control server). This functionality is implemented also within the Things-Server and thus

called a server “extension”. In standard web architectures this is often called a servlet (Java) or a module (Apache

HTTP). Extensions need some runtime container where they can be executed on request. In principal, more than

one runtime container for different flavors of extensions can be provided by a Things-Server.

Controller

So far we have seen mostly logical resource nodes - but where does the real computation happen? The boundary

between the Controller and the Devices is a bit fluent and not as sharp as the pictures show. In brief, the

Controller is the complete runtime infrastructure inside the Things-Server that makes all the other elements being

able to run or provide their services. Typically a Controller comprises

 11
T-H-I-N-X - “Thing Server” concept 11

• an operating system,

• a network stack within this OS that provides web connectivity and all the needed security features,

• a hardware drivers environment for the Devices,

• the runtime container(s) for extensions,

• some storage to save digital assets like web pages and/or sensor/actor data.

A (traditional) example for such a controller implementation is the popular Arduino family of single -board

computers [ARDU_2014]. Typical examples for more up-to-date controllers are the Linux-based single-board

computers like Raspberry Pi [RASP_2014] or Beagle boards [BEAGLE_2014]. Very recent also brand new special

cases exist where parts of the Controller live at runtime in the cloud like with the Electric Imp [EIMP_2014].

_Relations, _Configuration and _Features

The last elements of the abstract model are the X_Relations, X_Configuration and X_Features sub nodes. All

properties of the primary nodes with a more static nature are gathered in the “X_Configuration” sub nodes; all

properties with a more dynamic nature are gathered in the “X_Features” sub nodes. Information that links the

primary nodes between each other is contained in the X_Relations sub nodes. This resembles a bit the concept of

Object-oriented Development with their objects (to be something), internal members (to know something) and

internal methods (to do something) but at a higher abstraction level:

• Being something has to do with the type and existence (and thus identity) of a node and

• Knowing something denotes all internal values that are stored permanent inside the nodes and the other

nodes it is related to

• Doing something allows these nodes to change something inside them or also outside

What being, knowing and doing means for the individual nodes is explained now in detail by expanding the six

nodes and their sub nodes. The detailed information is modeled by using “slots” within the nodes. A slot means a

particular piece of information but does not make any assumptions about its implementation. Very often, in

simple cases the content of a slot is just a textual string or basic number. In slightly more complex cases it may be

some kind of object that can be easy represented as a JSON or XML structure with moderate deepness or a list of

strings or numbers. In very complex cases the content of a slot may be a list of objects or a self-contained net of

objects.

Anyway, the concrete representation and implementation of these slots is out of scope for now. It will play some

role when concrete mappings are described in chapters later in this document.

The slots of the resources that have an “*” at the end are used for the identification of these resource nodes.

Navigating between the nodes can be handled using the slots within the sub nodes X_Relations and taking the

identifying slots of the resource nodes as keys.

 12
T-H-I-N-X - “Thing Server” concept 12

ServicePoint

The following picture shows the details of a “ServicePoint”.

<uris>

As a ServicePoint is the connection to the cyber world it needs some kind of address scheme for this universe.

This is modeled by the <uris> slot which is a very common concept for this purpose. One concrete example

(subclass) for a URI is the URL http://your.domain:12345. In such a case some protocol (HTTP), some address

(your.domain) and some port (12345) is specified. As a Thing Server may have different ServicePoints at the same

time (e.g. it may be reachable via HTTP and CoAP simultaneously) there can exist [1..n] URI’s. Minimum number is

1 to have at least one possibility to reach the Things Server at all.

<inputs>

If the cyber world wants to provide some information or influence flow into the ServicePoint, this is modeled by

an input slot. Inputs are optional and can be multiples so their cardinality is [0..n]. Examples for inputs are

commands that are sent to the Things-Server that change some state of a TouchPoint which is connected via a

device (e.g. like a light bulb that goes on). Another input of a more indirect nature may be a device parameter

that can be set from the outside like the conversion rate for an A/D converter chip.

<outputs>

If the cyber world wants to consume some information or influence flow out of the ServicePoint, this is modeled

by an output slot. Outputs are also optional and can be multiples so their cardinality is [0..n]. Examples for

outputs are state values or state updates from TouchPoints that ca be accessed from outside. Outputs can also

provide “out-of-band” information about the Things-Server himself like the number of threads its controller is

running currently.

 13
T-H-I-N-X - “Thing Server” concept 13

SP_Relations

<devices>

This slot allows navigating from the ServicePoint to its connected devices. This slot has a cardinality of [0..n] as

ServicePoints without Devices can exist (e.g. by bearing only some Extensions that may realize a kind of gateway).

<aliases>

This slot allows navigating from the ServicePoint to its known Aliases. As Aliases are optional this slot has a

cardinality of [0..n].

<controllers>

This slot allows navigating from the ServicePoint to its implementing Controllers. As a ServicePoint without any

Controllers makes not much sense this slot has a cardinality of [1..n]. In most cases just one Controller will be in

place, but multi-core variants and setups that use e.g. 2-out-of-3 redundant architectures may be existent in the

future.

<extensions>

This slot allows navigating from the ServicePoint to its known Extensions. As Extensions are optional this slot has a

cardinality of [0..n].

SP_Configuration

<parameters>

A ServicePoint can have some parameters that tailor its behavior and which are relevant to the cyber world.

These parameters are contained in this slot. Examples for such parameters are service quality it provides, the

geolocation of a ServicePoint or if it uses authentication and encryption or not. As parameters are optional this

slot has a cardinality of [0..n].

<authentication>

If authentication is activated for a ServicePoint this slot contains the information to handle this. Examples for

authentication information may be the authentication modes the ServicePoint supports like Basic Auth or

OAuth2. As authentication is optional this slot has a cardinality of [0..n].

<encryption>

If encryption is activated for a ServicePoint this slot contains the information to handle this. Examples for

encryption information may be the type encryption algorithms it supports (e.g. AES 512). As encryption is optional

this slot has a cardinality of [0..n].

SP_Features

<discoverables>

A Things-Server can respond to requests that try to discover some of the services it offers. These requests will hit

the ServicePoint. This slot models the information that can be provided. An example for a discovering request is

the call to the path /.well-known by the CoAP discovery protocol. As discovery mechanisms are optional this slot

has a cardinality of [0..n].

<subscriptions>

Sometimes publish/subscribe mechanisms are used within a M2M communication scenario. A Things-Server can

offer such a service at its ServicePoint or subscribe itself at some other ServicePoint. This slot holds all active

subscribers from outside and all subscriptions the Things-Server has made external. The publish/subscribe

 14
T-H-I-N-X - “Thing Server” concept 14

mechanism of CoAP is an example for this functionality. As publish/subscribe mechanisms are optional as they are

not provided by every M2M communication protocol this slot has a cardinality of [0..n].

<events>

Within the ongoing operation of a Things-Server events can occur like an interrupt that has been detected. This

slot gives access to these events. However, no assumptions are made about the mechanism how these events are

advertised as this is dependent on the concrete mappings and their technical possibilities. As event detecting

mechanisms are optional this slot has a cardinality of [0..n].

 15
T-H-I-N-X - “Thing Server” concept 15

Device

The following picture shows the details of a “Device”.

A “Device” has the following slots:

<name>

This is the name of a Device that identifies it. Every device must have a name so this slot has the cardinality [1].

<class>

Every Device must have some kind of type that describes its nature and allows creating a set of Devices with

different names but the same type. In analogy to Object Oriented Technology as mentioned above this type of

Device is called a <class>. This mandatory slot takes this kind of information. Using the concept of class here does

not necessarily mean that class inheritance has to be in place for every Device driver implementation. However,

most modern implementation languages allow the usage of class inheritance and this will make the code for the

drivers more compact through reuse.

D_Relations

<touchPoints>

From the overview picture it is shown that every Device implements one or more TouchPoints. Navigating from

Devices to their TouchPoints is managed by this slot. As a Device without any TouchPoints makes not much sense

this slot has a cardinality of [1..n].

 16
T-H-I-N-X - “Thing Server” concept 16

D_Configuration

<address>

One of the most important configuration information of a Device is its address. The address here means all parts

of an address on an abstract level. The concrete layout of addresses differs very much and is hardware

dependent. In the case of the I2C bus, this would be the number of the I2C bus plus the I2C slave address of a chip

on this bus. The address is mandatory so this slot has a cardinality of [1]. In the case that a device has more than

one address (like the PCA9685 with its “all call” and “sub call” slave addresses) it may be necessary to create a

unique device instance for each address.

<parameters>

Devices can have some additional parameters like timing constants, bit resolutions or reference voltages. This slot

holds that information and has a cardinality of [0..n].

D_Features

<runnables>

Devices can have some functions that can be triggered from outside. An example for such a function is a

calibration routine that can be started from time to time to make sure the device delivers correct values. Another

example is the possibility to send a Device to a sleep mode and reawake it later when it’s needed again. This slot

holds that information and has a cardinality of [0..n] as not every device has such functions.

TouchPoint

The following picture shows the details of a “TouchPoint”.

 17
T-H-I-N-X - “Thing Server” concept 17

<category>

Each TouchPoint must have a <category> that denotes which kind of physical effect it is dedicated to. In order to

be consistent every TouchPoint must have exactly one category so its cardinality is [1]. For <category> the

following possibilities exist:

• Static digital I/O -> “digital”

• Pulsed digital I/O (one output variant also known as pulse width modulation “PWM”) -> “bitstream”

• Static analog I/O -> “analog”

• Modulated analog I/O (known as classic AM and FM modulation) -> “waveform”

• Sensors for any physical effect (e.g. temperature), any geometrical entity (e.g. position), any chemical effect

(e.g. molarity) or any biological indicator (e.g. glucose) -> ”sensor”,

By adding some generalization other kinds of logical TouchPoints also exist:

• Time information (e.g. from a RTC chip) -> “clock”

• Unique identifications (e.g. ID chips, built-in serial numbers, GUIDs) -> “id”

• Interfaces (e.g. Serial) -> “interface”

• Memory (e.g. RAM, EEPROM) -> “memory”

• Hardware buses (e.g. I2C, SPI, 1-wire) ->“bus”

It is possible that a single Device has a set of TouchPoints that belong to different categories. This may be a RTC

chip (-> category “clock”) that measures also the temperature (-> category “sensor”) (e.g. the DS3231 is such a

chip) or a hardware extension shield that carries a set of ports (e.g. digital and analog I/O chips).

<aspect>

If a TouchPoint is the member of a list of TouchPoints for one Device that have all the same category but touch

e.g. different physical effects, an additional aspect identifier is necessary. Especially for sensors a large number of

aspects exist.

For <aspect> the following possibilities exist (list is not complete):

• Geometrical entities -> “position”, “distance”, ... (many possibilities)

• Physical effects -> “temperature”, “pressure”, “current”, ... (dozens of possibilities)

• Chemical effects -> “molarity”, “volumetric-flow”, “ph-value”, ... (many possibilities)

• Biological indicators -> “glucose”, “cholesterol”, ... (dozens of possibilities)

• Direction indicator ->”input”, “output”, “inout”

• Special signal forms ->”pwm”, “am”, “fm”

• Sub data slots->”time”, “date”, “datetime”

<channel>

If a TouchPoint is the member of a list of TouchPoints for one Device that have all the same category and aspect,

an additional channel identifier is necessary. Typically these lists are sorted and the channel identifiers are integer

numbers starting at 0 or 1 like the n A/D channels for a typical A/D chip. But this is not mandatory from an

abstract point of view. Cases can exist where a <channel> may indicate some kind of different measuring way like

a light sensor that can have visible and infrared light measuring channels. And this also includes the case where a

channel also uses some kind of logical sub categorization where this makes sense like e.g. “16/infrared”.

For <channel> the following possibilities exist:

• (Sequential) Number -> “5”

 18
T-H-I-N-X - “Thing Server” concept 18

• Any identifying string -> “a”, “port-b”

• Geometrical reference identifier ->”x”, “y”, “z”

• Physical reference identifier ->”sea”, “infrared”, “relative”

• Chemical reference identifiers -> “rvs”, “ps”, “os” (some examples for pH value measurements)

• Biological reference identifiers -> “fbs”, “ogtt”, “ivgtt”, “hba1c” (some examples for blood glucose tests)

At the bottom line, it is sufficient if all TouchPoints of one Device, which belong to the same category and optional

to the same aspect, have different channel identifiers.

If a Device has

• only one TouchPoint or

• multiple TouchPoints of different categories or

• multiple TouchPoints of different category/aspect pairs,

then the <channel> slot can be empty.

For this reason, all slots sequenced together (<category>, <aspect> and <channel>) are used for the identity of

TouchPoints including the case where <aspect> and/or <channel> is empty. The sequential combination of

category, aspect and channel must be unique for each Device. Putting all this together leads to a cardinality of

[0..1] for the <aspect>and <channel> slot.

<value>

This is the digitized value of the physical effect that is measured by this TouchPoint. If it has not been measured

before the first access, it may be null. In simple cases, this value may just be a Boolean (0/1), Integer, Floating-

Point or short String. In complex cases, the value may be a long String being some kind of text or even a binary

object representing some blob media elements.

TP_Configuration

<unit>

Sometimes a TouchPoint (most notably a sensor) can offer its results in different physical, chemical, etc. units. To

handle this, the slot <unit> is used. An example would be a temperature sensor that can offer its values in the

units Celsius, Kelvin or Fahrenheit. As optional item it has the cardinality of [0..1].

<mathematicalType>

Sometimes a TouchPoint can handle its values in different mathematical types like integer, float or boolean etc.

To handle this, the slot <mathematicalType> is used. An example would be an A/D converter device that can offer

its values in the units Integer (being the raw A/D conversion value) and Float (being the raw A/D conversion value

divided by the maximum A/D conversion value). As optional item it has the cardinality of [0..1].

For < mathematicalType > the following possibilities exist:

• Integer -> “INTEGER”

• Decimal -> “FLOAT”

• Boolean -> “BOOL”

• Binary -> “BINARY”

• N-ary -> “OCT”, “HEX”

• Date -> “DATE”

• Time -> “TIME”

 19
T-H-I-N-X - “Thing Server” concept 19

• String -> “TEXT”

<function>

Sometimes a TouchPoint can be set to different operating modes. An example for such a behavior is a digital I/O

port that can be configured alternatively as input, output or bidirectional. This aspect is covered by the slot

<function>. As optional item it has the cardinality of [0..1].

<termination>

Sometimes a TouchPoint (most notably for digital I/O devices) can have a termination towards some defined

signal level. Technically this is realized by pull-up or pull-down resistors. For some chips, these resistors can be set

from remote via commands. This configuration option is covered by the <termination> slot. As optional item it

has the cardinality of [0..1].

<detection>

Sometimes a TouchPoint (most notably for digital I/O devices) can have a kind of edge detection mechanism and

generate an interrupt in some way. For some chips, this detection can be set from remote via commands. This

configuration option is covered by the <detection> slot. As optional item it has the cardinality of [0..1].

<parameters>

Like Devices also TouchPoints can have individual additional parameters that are covered here. An example for

such a parameter is the outside reference temperature (sensor) used to calculate the pressure at sea level for an

inside pressure sensor. As optional item it has the cardinality of [0..n].

TP_Features

<runnables>

Like Devices also TouchPoints can have some functions that can be triggered from outside. An example for such a

function is a bit sequence that is being output on a digital output channel. This slot holds that kind of information

and has a cardinality of [0..n] .

 20
T-H-I-N-X - “Thing Server” concept 20

Alias

The following picture shows the details of an “Alias”.

<substitution>

This is the new name (or resource path) and it has a cardinality of [1] as exact one substitution is possible per

Alias. The <substitution> is the identifying slot of an Alias. Technically, when getting a service request to the new

name, it is completely substituted by the original name. In practice, the substitutions are either much shorter that

the possibly long names resulting from the hardware configuration. Or they use usage-oriented words to have

better names that give hints about their purpose. Aliases can also be used to hide some internal resource

structures to the outside world. Changing the original name but keeping the substitution name can allow

modifying some TouchPoint settings without affecting the calls from outside. This is something very similar to the

link concept within UNIX.

<original>

This is the original resource name resulting from the technical path derived from the relations between the

Devices and their TouchPoints. It has a cardinality of [1] as exact one name translation is possible for each Alias. In

principal more than one Alias can exist for the same original name as this is still logically consistent. The practical

benefit of doing so is however limited.

 21
T-H-I-N-X - “Thing Server” concept 21

Extension

The following picture shows the details of an “Extension”.

As mentioned, Extensions allow adding additional functionality to the Things-Server. They can run inn their own

processes and/or threads if desired and possible in the runtime environment of the Things-Server.

An “Extension” has the following slots.

<name>

This is the calling signature of the Extension. Its concrete textual layout is somewhat dependent on the

restrictions and conventions of the implementing language.

<arguments>

An Extension can have [0..n] arguments that either have a specific sequence or a naming convention for named

arguments or both (as in Python). Arguments themselves can be very simple objects like strings or numbers up to

complex object models like a complete object tree marshaled to e.g. JSON or XML.

<result>

An Extension can have [0..1] result. For the type of results the same applies as for arguments.

 22
T-H-I-N-X - “Thing Server” concept 22

Controller

The following picture shows the details of a “Controller”.

A “Controller” has the following slots.

<processes>

Within a Controller the computing tasks are implemented. The aspect of a running computing function is modeled

by the process information within this slot. The minimum number of processes is 1, otherwise nothing would

happen. In most cases more than one process exists within a controller (e.g. the drivers process and the

communication process) so this slot has a cardinality of [1..n].

<threads>

To improve performance and quasi parallel computing mechanisms very often light-weight processes called

threads are used. The minimum number of threads is 1 which is just the main thread of the possibly single

process. In most cases more than one thread exists within a controller so this slot has a cardinality of [1..n].

<states>

Attached to the process(es) and thread(s) are informations that hold some data about those. These are called

states and are modeled with this slot. States are optional so this slot has a cardinality of [0..n].

C_Relations

<devices>

This slot allows navigating from the Controller to its Devices. This slot has a cardinality of [0..n].

<extensions>

This slot allows navigating from the Controller to its Extensions. This slot has a cardinality of [0..n].

 23
T-H-I-N-X - “Thing Server” concept 23

C_Configuration

<parameters>

Controllers can have some parameters that can be changed. Examples for such parameters are the amount of

memory used for some processes and threads or the paths used to provide static data like web pages.

<bindings>

In order to realize that the Controller functionality which is executed is connected to the outside it is necessary to

bind the Controller process(es) to some interfaces that can be reached via the URIs at the ServicePoint. As it is

possible that one Controller serves more than one URI (e.g. one for a HTTP binding and another for a CoAP

binding) this slot has a cardinality of [1..n].

<authorizations>

Accompanied with the <authentications> of the ServicePoint are authorization rules. As these rules are tightly

coupled to the available resources inside the Things-Server and as they are implemented within the Controller

functionality they are put into this slot. As authorization is optional this slot has a cardinality of [0..n].

<firmwares>

The code that runs within the controller can be seen as being the firmware of a Things-Server. More than one

logical part of a firmware may exist so this slot has a cardinality of [1..n].

C_Features

<runnables>

Within a Controller some functions that can be activated exist. They are modeled with this slot. Examples for such

runnables at the Controller level are the typical setup() and loop() parts of an Arduino-like Controller code. In

contrast to Extensions which are user-defined, they live predefined (maybe with empty bodies) at the controller

level. Another example would be the possibility to trigger a garbage collection for a virtual machine that runs

inside the Controller to do some memory housekeeping when appropriate. And, finally, creating and deleting

Devices at runtime would also be a runnable feature of a Controller. As runnables are optional this slot has a

cardinality of [0..n].

<updatables>

Sometimes parts or all of the controller software can be updated. This is covered by this slot with a cardinality of

[0..n].

<logs>

In order to be able to follow the actions of a Controller from an operational view the usage of logs is very

common. This slot covers this aspect with a cardinality of [0..n].

The following chapters now look at possibilities how this resource model can be used when concrete web

interfacing technologies are used to communicate with the Things-Server

Where applicable, the corresponding mapping rules to the different concepts and/or languages are described in

detail.

 24
T-H-I-N-X - “Thing Server” concept 24

Generic Architecture Models for “Thing-Server” and “Thing-Clients”

Infrastructures

Basic/single-tier implementation architecture

The following picture shows a layered architecture model that compiles all components for a Thing-Server and a

Thing-Client into one abstract structure:

This implementation architecture stacks all building blocks of the resource model (see legend) extended by some

blocks that represent the user “frontend” and process control blocks (see legend, yellow boxes). This model does

not represent any kind of exact layered called-by communication model. It more stacks the building blocks

together in the sense that each layer is “using” the layer below it or “living” inside it. The additional text in the

boxes gives examples for what this building block stands for. It is meant to give hints and explanations, it is not

meant to be complete.

 25
T-H-I-N-X - “Thing Server” concept 25

In principle, this kind of architecture can be implemented running all parts on a single physical device. This would

be the case when the whole stack were implemented on a single Raspberry Pi and the end user would use this

from a monitor and keyboard/mouse directly attached to this individual Raspberry Pi.

However, in practice this would be only useful for e.g. testing purposes. More common, the full monolithic stack

from above will be split between different devices that are connected via some kind of wired or wireless network.

These scenarios will be explained in the following chapters.

2-tier implementation architecture

In simple cases, one of the most common used architecture patterns is the 2-tier (or classical client/server)

architecture pattern. Here, some (smaller) part is running on one device that is directly exposed to the end user

(”client”). All the (bigger) remainder parts are running on another device that sits somewhere near the things that

have to be connected to the cyber world (“server”). Between the both sits the network connection which has

basically two kinds of channels:

• a “service” channel that is used for standard communication and

• a “control” channel that is used for special-purpose communication.

For the physical communication, both channels may use the same connection or use separate communication

means. Even completely out-of-band communication for the control channel (e.g. for performance or security

reasons) is sometimes used.

The following picture illustrates the 2-tier architecture:

 26
T-H-I-N-X - “Thing Server” concept 26

The single-tier architecture is split within the Broker and Monitor layer into a client part and a server part plus a

connection between them. As the separate client needs also to live on some kind of device, some client blocks for

runtime environment, operating system and hardware platform are added. It’s obvious that an unlimited number

of clients can be connected to a single thing server. Problems may occur only when too much clients try to

concurrently access the server or when different clients maintain simultaneous connections that interfere with

each other by sending contradictory messages.

A typical example for 2-tier architecture would be a Raspberry Pi than hosts the complete server part and runs

headless (no keyboard and monitor is attached) and some kind of PC or Smartphone that accesses this server

from its browser.

3-tier implementation architecture

In enhanced/professional cases the most common architecture that is used is the 3-tier architecture pattern.

Here, some (probably small) part is running on the device that is directly exposed to the end user (”client”). More

 27
T-H-I-N-X - “Thing Server” concept 27

or less it’s only the part that is needed to provide some kind of basic user experience and an API that connects

this user experience to the second part, which is the gateway in the middle between the client and the server.

The main purpose of the gateway is to provide more complex process implementations for e.g. multiple clients or

some kind of mashups/portals and connect this to the things server backend again. The gateway also contains a

part that implements the counterpart for the user experience API and that communicates via a UX service and UX

control channel with the client. As with the 2-tier architecture, the broker and monitor layer is split, now into a

gateway and server part. Also, the same rules for the service and control channel apply.

All the remainder “thing” parts are running on a third device that sits like in the 2-tier variant somewhere near

the things that have to be connected to the cyber world.

The following picture illustrates the 3-tier architecture:

It is important to note that now we have some kind of communication split. The interface/API between the

gateway and the thing server now uses the API that covers the thing service functions. In many cases, this will be

the same interface that is used within the 2-tier architecture. For this reason, the thing server will be mostly

unaware if it is used in a 2-tier or 3-tier architecture. A small exception occurs for the User Experience and Process

building blocks, these may be missing or just be unnecessary in most 3-tier scenarios as those functions can be

completely implemented within the gateway.

 28
T-H-I-N-X - “Thing Server” concept 28

The interface between the gateway and the client however now uses some other kind of API that handles UX

services and UX control. As this API covers different functions it will be in most cases look different from the thing

server API. It may even be the case that for different clients, different UX APIs can be used (and fully hiding this

from the thing server). Plus, it is also possible to have multiple thing servers with different thing service APIs being

connected to the same gateway.

In other words, the big advantage of a 3-tier architecture is the possibility to integrate and decouple a set of

different clients and different thing servers in an overall IoT solution scenario using this kind of gateway

architecture. Most of the current “professional”-grade solutions from IoT software component libraries (e.g.

OpenHAB, Eclipse Smarthome, ...) support such an architecture scenario just out of the box, more – they regard it

as their preferred implementation pattern. It’s also worth to note that the upcoming IoT Mashup solutions and

Microservice-based architectures will also use this kind of 3-tier approach.

A simple example for a 3-tier architecture would be

• a number of Raspberry Pi devices that host the thing server part sitting next to the TouchPoints that they

have to physical connect to (e.g. one of them in each room of your house) and again run headless (no

keyboard and monitor is attached)

• another Raspberry Pi (or some more capable hardware device like a Beagle Bone or any kind of Linux PC) that

hosts the gateway part and runs maybe also headless

• and a set of PCs and/or smartphones/tablets that access this gateway from their browsers or rich/native

clients apps installed on them.

Basic/single-tier implementation architecture with security and device management

extensions

The basic architecture can be enhanced with a number of security and device management features. The

following illustration shows how this can be achieved:

 29
T-H-I-N-X - “Thing Server” concept 29

Mainly both additional building blocks (Secure Access in black color, Device Management in grey color) are

directly attached to the Broker and API building blocks. Like for some other blocks, also a server and a client part

exists.

The Secure Access blocks are added to impose some additional security features on the client connection.

Additionally means here that the “standard” security measures (e.g. using https instead of http) are considered to

be too weak or too hard to manage. This may apply for the service and the control channel simultaneously or for

just one of them. The pair of client and server Secure Access blocks ensures in this context some kind of highly

secured point-to-point connection. If security related management features are also needed they are considered

to be an intrinsic part of the two building blocks.

The Device Management blocks are added to add some additional device management features to the whole IoT

infrastructure. This is especially important when a large number of IoT devices are part of an IoT solution. While

the Device Management server part sits on the top level of the thing server, the standard thing client does not

have any connection to this. In typical solution architectures, some kind of separate device management

“console” or “monitor” is handling this kind of functionality. In principal, the device management blocks may use

the secure access blocks or they may use them not. This mainly depends on the overall architecture of the device

management solution which is not part of this document.

 30
T-H-I-N-X - “Thing Server” concept 30

2-tier implementation architecture with security and device management extensions

Like the base architecture also the 2-tier architecture can be enhanced with a number of security and device

management features. The following illustration shows how this can be achieved:

In this case, the secure access is only used for the clients while the device management just uses the “normal”

connection (as it may sit only within the internal already secure network segments).

Obviously, also the 3-tier architecture can be enhanced with these extensions, but this follows the same principles

as the 2-tier architecture so this is not shown explicitly.

2-tier implementation architecture for WebIOPi

As mentioned in the introduction, WebIOPi is an implementation of the resource model. While 1-tier usage of it is

possible (using the “localhost/127.0.0.1” network interface), the typical usage pattern is 2-tier. The following

picture illustrates the various components of WebIOPi in relation to the 2-tier architecture from above:

 31
T-H-I-N-X - “Thing Server” concept 31

The picture is self-explanatory, some aspects that are worth to be noted additionally are:

• WebIOPi does not implement a control channel, so this part of the 2-tier architecture is stroked out.

• The thing server part is mainly implemented in Python 2/3 and running on Raspbian, so the main device

service runtime environment is Python 2/3.

• Some very small parts (the native GPIO port connection and the 1-wire device drivers) are implemented using

the C language. The source code for the native GPIO connection is from WebIOPi and included, the source

code for the 1-wire kernel modules is from standard Debian Linux and can be found in those repositories.

• The Python directory source paths (.../python/webiopi/devices/...) and the *.py file names reflect the basic

relationship to the architecture building blocks. However, this is just convenience, this is neither mandatory

nor perfect for each file and could be implemented completely different.

• The thing service API is identical to the WebIOPi REST API.

• The Thing Extension (blue) and Process implementation (yellow) building blocks are implemented within

custom Python server scripts and their possibility to host setup(), loop(), destroy() methods and an arbitrary

number of user-defined “macros”.

• The Alias building block (cyan) is implemented using the “routes” entries within the WebIOPi config file.

• On client side, a set of components exists. The main component is the JScript library (webiopi.js and jquery.js)

plus some standard and example HTML pages that allow building browser-based clients for WebIOPi servers.

• Other client components which are provided are client libraries for Python and Java clients, however they are

currently not fully implemented (as of Release 0.7.0) and may be more seen as examples.

WebIOPi does provide no dedicated components to build a 3-tier architecture. However, it is possible to easily

integrate the server part of WebIOPi with 3rd party 3-tier IoT architecture components from e.g. Eclipse or

commercial vendors. In such a scenario, each WebIOPi instance would be a concrete thing server participating in

a 3-tier infrastructure.

 32
T-H-I-N-X - “Thing Server” concept 32

In order to support a possibility for easy secure access, WebIOPi can be combined with an add-on component

called IoT toolkit [WEAVED_2015] developed in cooperation with Weaved Inc that provides a security enhanced

communication channel from browsers or mobile apps to a WebIOPi server using the IoT secure cloud access

service from Weaved. See the Weaved website for more information on this.

 33
T-H-I-N-X - “Thing Server” concept 33

Positioning the IoT Model in the Landscape of an API-centric Digital Economy

Context

The following picture shows a schematic illustration what role the IoT model can play in the landscape of the

upcoming API-centric digital economy ecosystems. The picture lists FOSS as well as non-FOSS activities.

In the core is the resources model with its textual and graphic representation form this document extended by a

formal representation using RDF/OWL. From this conceptual core a set of different usage scenarios and patterns

can be derived. This leads in the first step to the anticipated secondary representations named in the blue circles.

These are not considered to be complete, just the most popular ones for upcoming IoT ecosystems are named. In

the second step, the grey clouds denote some concrete ecosystems, usage scenarios and/or implementation

patterns. On top, WebIOPi (and iomotix [IOMOTIX_2014]) are named as they are ancestors and the most

prominent examples of an implementation for the IoT model. Also, most code examples in this document refer to

this implementation.

RDF/OWL core

One of the most exiting web concepts that will gain much adoption in the upcoming next evolution of the internet

are the technologies that are summarized using the keywords “Sematic Web” and “Linked Data”. The conceptual

core of these activities is RDF. One of the most important implementation technologies for that is OWL. RDF/OWL

is suited to represent all kinds of conceptual resource models. So it’s just natural that the T-H-I-N-X IoT resource

model can also be represented in the form of an ontology based on RDF/OWL. It’s important to know that there is

 34
T-H-I-N-X - “Thing Server” concept 34

not one unique representation of the IoT model with that. In fact, RDF/OWL is by its nature a very generic

concept so consequently many possible representations of the IoT model with RDF/OWL exist. The exemplary

representation in the next chapter is just one concrete proposal for this.

The RDF/OWL core ontology allows representing the state of each IoT things server instance with those means at

runtime. This state can then be inserted into any kind of non-relational database, e.g. one of the “triples stores”

(e.g. Virtuoso) that are mainly suited to carry RDF content. And, resulting from that, it will be possible to retrieve

and navigate that IoT instance state content with query tools that are perfect suited for such content like SPARQL.

At the bottom line, this will allow to search and navigate real-time IoT server content with tools from the next

evolution of the internet. It may also allow implementing very advanced interaction concepts like natural

language communication and Q&A sessions on IoT data using some of the upcoming cognitive computing engines.

Imagine you could answer questions like “Are all lights shut off in my house?” and give commands like “Please

switch off all lights in my office!” without the need to create and manage explicit lists of all your lights or

implement special hand-crafted code that iterates all your lights and does some action based on that hard-wired

navigation vehicle. Future? Yes, but a kind of future we can expect to become true in the next evolution steps of

the internet, namely also of the internet of things. The RDF/OWL model will be the base for that.

JSON rendering

One of the more simple and immediate benefits of the IoT model is its rendering in JSON. JSON is nowadays very

popular in the context of API’s, namely REST API’s. JSON allows describing and transferring the state of an IoT

server instance. It can be used on a very fine grained level by just carrying the state of a single sensor but also on

a very coarse-grained level by carrying the complete state of an IoT server plus all levels of granularity in between

those extreme variants.

As with RDF/OWL, JSON also has some kind of schema language to describe the JSON rendering on a formal base.

If such a schema is available, this will allow the usage of tools consuming the schema and JSON instance data to

do verifications and/or augmented documentation (like e.g. with Docson). It will even be possible to generate

code for applications that produce or consume JSON content based on that schema. And, in the meanwhile even

some non-SQL databases exist that allow the native storage of JSON content for later (real-time) retrieval (e.g.

MongoDB)

The chapter on JSON mapping and serialization contains a representation of the IoT model in JSON language

concepts.

XML rendering

One of the more advanced but still very common benefits of the IoT model is its rendering in XML. XML is up till

now very popular in the context of service-oriented architectures, namely SOAP API’s. Similar to JSON also XML

allows describing and transferring the state of an IoT server instance. It can be used on a very fine grained level by

just carrying the state of a single sensor but also on a very coarse-grained level by carrying the complete state of

an IoT server plus all levels of granularity in between those extreme variants. On a high-level conceptual view

there is no difference between JSON and XML, it’s just another formal language. The most important difference is

that XML allows more formal details (allowing finer-grained verification) and that XML is somewhat much more

verbose compared to JSON.

As with JSON, XML also has a schema language to describe the XML rendering on a formal base. If such a schema

is available, this will allow the usage of tools consuming the schema and XML instance data to do verifications

and/or augmented documentation. It will even be possible to generate code for applications that produce or

consume XML content based on that schema. And, in the meanwhile even some non-SQL databases exist that

allow the native storage of XML content for later (real-time) retrieval and analysis.

 35
T-H-I-N-X - “Thing Server” concept 35

The chapter on XML mapping and serialization contains a representation of the IoT model in XML language

concepts.

HTTP/CoAP REST API

One of the most popular concept and technology for APIs in the context of modern web based architectures are

RESTful APIs. They have been introduced some years ago and are now very broadly used all over the internet.

The chapters on different HTTP/CoAP REST API’s show how the IoT model can be used to map it into directly into

a set of RESTful API calls. It also refers to special API tools that can be used to document and test a set of formal

defined API’s like the swagger toolset [SWA_2014].

SOAP API

The most popular concept and technology for APIs in the context of service oriented architectures (SOA) is the

usage of the SOAP protocol [SOAP_2000] in combination with WSDL [WSDL_2001] and XML payloads.

The chapter on SOAP API shows how the IoT model can be used to map it into directly into a set of SOAP API calls

that carry XML rendered IoT payload.

WebSocket API

WebSockets (WS) [WEBSOCK_2014], [IETF RFC6455] is one of the next evolution of the HTTP protocol. In

extension of the standard HTTP protocol WebSockets allow the establishment of a permanent bi-directional

communication channel between two networked nodes based on TCP/IP. This is very similar to the good old serial

communication line and its very popular network-based successor the so-called sockets that derive form work

made for UNIX (hence the name web-“sockets”). The biggest advantage is the fact that once the bi-directional

communication channel has been established, the (things) server can send back answers to the client (e.g. state

changes and/or event/interrupt notifications) without the need for any continuous polling mechanism on the

client side. As you can imagine, such an enhanced communication scheme will be of high benefit for IoT

client/server scenarios.

Due to its close relation to the HTTP protocol WebSockets are implemented as an extension/upgrade of the HTTP

handshake and their standard port is still 80.

The chapter on WebSockets will show how the IoT model can be used in WebSocket communication architectures

that implement a WebSocket API.

MQTT API

MQTT (MQ Telemetry Transport) [MQTT_2014] is another network protocol that looks to have an important

impact in the IoT ecosystem landscape. It has been developed by IBM and others and has been handed over to

OASIS to make it an IoT world official standard. MQTT is simple, lightweight and thus optimized for

communication with embedded devices that are limited in their processor or memory resources in an IoT

infrastructure. It has variants based on TCP/IP and non-TCP/IP networks.

The chapter on MQTT API will show how the IoT model can be used in MQTT communication architectures that

implement a MQTT API.

Other candidate IoT API protocols and payload rendering options

Some common used IoT M2M protocols in broad use are:

• XMPP/Jabber (http://wiki.xmpp.org/web/Tech_pages/IoT_systems)

• Efficient XML Interchange (EXI) (http://www.w3.org/TR/exi/)

• OMA Lightweight M2M (http://openmobilealliance.hs-sites.com/lightweight-m2m-specification-from-oma)

• OPC Unified Architecture (UA) (https://opcfoundation.org/about/opc-technologies/opc-ua/)

 36
T-H-I-N-X - “Thing Server” concept 36

• ETSI SmartM2M (http://www.etsi.org/technologies-clusters/technologies/m2m)

Mode text tbd.

IoT Ecosystems and Consortiums

Text tbd.

TODO: Reference to EEBUS, IIC, AA and I4.0.

IoT Architecture Patterns

Text tbd.

TODO: Reference to:

• Microservice Architectures and

• Service Mashups

 37
T-H-I-N-X - “Thing Server” concept 37

Formalizing the Model with RDF/OWL

Text tbd.

TODO list:

• Defining an ontology using RDF/OWL with Protégé

• Check references to other sematic W3C standards and/or ontologies and/or namespaces related to IoT

resources and objects, candidates are

o Clock -> http://www.w3.org/TR/owl-time/

o ...

• Check usage of JSON-LD -> http://www.w3.org/TR/json-ld/

• Provide unique identifiers for resource nodes; it is tbd for what kind of nodes this makes sense (external

exposed granularity)

• Provide HTTP addresses for sematic lookup

 38
T-H-I-N-X - “Thing Server” concept 38

THINX HTTP/CoAP REST API Mapping

Overview

This chapter aims to map the complete IoT model with all its facets to an HTTP/CoAP based IoT service API. The

proposed mapping has currently no concrete implementation but may get one in the future. The complete

mapping is only dependent on the IoT model and completely independent from any concrete implementation

language.

Basic mapping concepts and main resource node path

The most important concepts for the REST API mapping are:

• HTTP/CoAP verbs are used according to the following rules:

• GET -> get/read values

• PUT -> set/write/update values

• POST -> create (temporary) resource objects

• DELETE -> delete (temporary) resource objects

• If submitting of request values is necessary (e.g. for PUT, POST) they are transferred either URL-encoded

within the request path (simple cases) or using the request body (complex cases). Valid mime types are

“text/plain”, “application/json” and “application/xml”. Mime types have to be set correct for all requests.

Within this document, other chapters describe proposals for JSON and XML renderings of the IoT model that

can be used here. Depending on the affected resource node for a request, also partly serialized fragments of

the resource model can be used.

• The main resource path from ServicePoint via Device to TouchPoint (being the dark gray line in the IoT model)

is mapped by navigating along the SP_Relations slot <devices> with this fundamental schematic URL path

pattern {SP_URI}/devices/ and

• being directly extended by

{SP_URI}/devices/{devicename}/{category}[/{aspect}][/{chan/nel}]

[/{value}]

• {SP_URI} is just a schematic placeholder for a valid ServicePoint URI like e.g.

http://my.domain:8000 or coap://224.0.1.123:5683.

• According to the slot cardinalities of the IoT model, the path parameters {devicename} and

{category} are mandatory; the path parameters {aspect}, {chan/nel} and {value} are optional.

Please note that channel path parameter can add one or more additional / inside. For URL-encoded PUT and

POST values, they are added after an additional /.

• Navigating along the main path leads only to the TouchPoint values or the full/partial (JSON) state of the

selected resource node. All other API slots are handled using special request parameter verbs. This is valid for

reading, writing, creating and deleting type of requests.

API version indicator

As a rule for handling API releases and upgrades it is recommended to add a version indicator to the resource

path. The preferred place for such an indicator is at the very root of the main resource path like in this pattern:

{SP_URI}/{versionIndicator}/{restOfPath}

In the simplest case, the value for {versionIndicator} could just be something like “1” or “v2”. The main

resource path would be in this case:

{SP_URI}/v2/devices/{devicename}/{category}[/{aspect}]

/{chan/nel}][/{value}]

 39
T-H-I-N-X - “Thing Server” concept 39

In order to keep the patterns and examples in the remainder of this chapter short, the version indicator is

removed from all paths but should be added in a real final implementation.

Device and {devicename}

The path parameter {devicename} is used for the <name> slot of the Device nodes. For that reason all device

names must comply with the rules valid for URL paths. This means that letters and digits can be used without

problems. However, care must be taken with all special characters.

An example for device selection using the devicename “mydevice” is:

http://my.domain:8000/devices/mydevice/...

Especially for modern SOC microcontrollers with rich embedded device functionalities the predefined names

“native” or “built-in” should be used to address those special devices.

An example for addressing the native GPIO ports of such a microcontroller would be:

http://my.domain:8000/devices/native/digital/25

TouchPoint and {category}

The path parameter {category} is used for the <category> slot of the TouchPoints. The following possibilities (the

list names the most important ones but can’t be complete) for categories exist:

• digital

• bitstream

• analog

• waveform

• sensor

• clock

• memory

• id

• interface

• bus

• ...

An example for combined device and category selection is:

http://my.domain:8000/devices/mydevice/digital/...

TouchPoint and {aspect}

The path parameter {aspect} is used for the <aspect> slot of the TouchPoints. The following possibilities (the list

names the most important ones but can’t be complete) for aspects exist:

• Geometrical entities that sensors measure; this expands unique to sensor/{geometricalentity} and has the

following possibilities (also this list can’t be complete, in principal all known measurable geometrical entities

are possible)

o sensor/position

o sensor/distance

o ...

• Physical effects that sensors measure; this expands unique to sensor/{physicaleffect} and has the following

possibilities (also this list can’t be complete, in principal all known measurable physical effects are possible)

o sensor/acceleration

 40
T-H-I-N-X - “Thing Server” concept 40

o sensor/rotation

o sensor/orientation

o sensor/velocity

o sensor/temperature

o sensor/pressure

o sensor/altitude

o sensor/luminosity

o sensor/humidity

o sensor/current

o sensor/voltage

o sensor/power

o sensor/tension

o sensor/radiation

o ...

• Chemical effects that sensors measure; this expands unique to sensor/{chemicaleffect} and has the following

possibilities (also this list can’t be complete, in principal all known measurable chemical effects are possible)

o sensor/molarity

o sensor/ ph-value

o ...

• Biological indicators that sensors measure; this expands unique to sensor/{biologicalindicator} and has the

following possibilities (also this list can’t be complete, in principal all known measurable biological indicators

are possible)

o sensor/glucose

o sensor/cholesterol

o ...

• Direction indicators:

o digital/input

o analog/output

o ...

• Special signal form indicators

o analog/pwm

o waveform/am

o waveform/fm

o bitstream/ac3

o bitstream/dts96

o bitstream/pcm48

o ...

• Protocol or technology indicators:

o interface/serial

o interface/rs485

o interface/midi

o interface/dmx

o bus/i2c

o bus/spi

o bus/1wire

o ...

• Logical sub data slots or format indicators:

 41
T-H-I-N-X - “Thing Server” concept 41

o clock/time

o clock/date

o clock/datetime

o clock/second

o clock/minute

o clock/hour

o memory/bit

o memory/byte

o memory/word

o memory/long

o id/uuid

o id/raw

o ...

• Predefined keywords for specific attributes of a TouchPoint category:

o digital/count

o digital/banks

o analog/count

o bitstream/channels

o ...

TouchPoint and {channel}

The path template parameter {channel} is used for the <channel> slot of the TouchPoints. The following

possibilities for channels exist:

• Plain enumeration with (sequential) positive integer numbers including 0:

o digital/0

o analog/15

o sensor/temperature/3

o ...

• Plain identification with a string:

o digital/output/relais1

o analog/input/port-b

o bitstream/pcm48/center

o ...

• Geometrical coordinate or reference point identifiers:

o position/x

o position/y

o position/z

o position/lat

o position/long

o position/alt

o ...

• Physical sub effect, coordinate or reference point identifiers:

o pressure/sea

o luminosity/visible

o luminosity/ir

o luminosity/uv

o humidity/relative

 42
T-H-I-N-X - “Thing Server” concept 42

o humidity/absolute

o acceleration/x

o acceleration/y

o acceleration/z

o rotation/roll

o rotation/pitch

o rotation/yaw

o .../resolution

o .../maximum

o .../vref

o ...

• Chemical reference identifiers:

o ph-value/rvs

o ph-value/ps

o ph-value/os

o ...

• Biological reference identifiers:

o glucose/blood/fbs

o glucose/blood/ogtt

o glucose/blood/ivgtt

o glucose/blood/hba1c

o ...

Every TouchPoint value has an optional default unit and/or mathematical type that is used unless otherwise

specified (NONE is allowed). In order to choose other variants (held by the TouchPoint slots <unit> and

<mathematicalType>) than these default unit and types, a special mechanism has to be used that will be

explained later.

Examples for combined device, category, aspect and channel selection are:

http://my.domain:8000/devices/mydevice/digital/output/12

http://my.domain:8000/devices/mydevice2/sensor/temperature/3

http://my.domain:8000/devices/mydevice2/sensor/pressure/sea

Just for completeness, to demonstrate the version indicator recommendation, this would result in final paths like

these:

http://my.domain:8000/v2/devices/mydevice/digital/output/12

http://my.domain:8000/v2/devices/mydevice2/sensor/temperature/3

http://my.domain:8000/v2/devices/mydevice2/sensor/pressure/sea

ServicePoint

As mentioned in the base mapping concept, the ServicePoint is the root anchor point for the resource path and is

mapped via its URI(s) using just this placeholder:

{SP_URI}

An example for accessing a ServicePoint root node is:

 43
T-H-I-N-X - “Thing Server” concept 43

http://my.domain:8000/...

X_Relations

Basically, the selection along the resource path for X_Relations to an individual node is implemented by putting

an identifying name at the end of a path (segment) derived from the ServicePoint root like

• {SP_URI}/devices/myname gives access to the whole Device named “myname” (as already explained

above)

• {SP_URI}/controllers/somecontroller gives access to the whole Controller named

“somecontroller”

• {SP_URI}/extensions/an-extension gives access to the whole Extension named “an-extension”

All identifying slots of the abstract IoT model are marked with an asterix “*” after the name of the resource node

slot names. More details for controllers and extensions will be explained later in separate sub chapters.

In order to map the [o..n] cardinality of X_Relations for a selection along the resource path for all slots with a

maximum cardinality higher as 1 the help of the commonly known wildcard character “*” is used, like

• {SP_URI}/devices/* which gives the list of all [0..n] existing devices or

• {SP_URI}/devices/mydevice/* which gives access to all TouchPoints (i.e. analog and digital channels)

of the Device named “mydevice”.

• {SP_URI}/devices/mydevice/digital/* which gives access to all digital TouchPoints (i.e. digital

channels) of the Device named “mydevice”.

• {SP_URI}/devices/mydevice/sensor/temperature/* which gives access to all temperature

sensor TouchPoints of the Device named “mydevice”.

The standard results of those requests are JSON objects or JSON arrays. The nesting deepness of the JSON results

may be configurable by additional request parameters.

In order to be able to submit additional selection criteria it is allowed to add this by query parameters like

• {SP_URI}/devices/*?category=digital which gives the list of all digital TouchPoints or

• {SP_URI}/devices/*?class=TMP275 which gives the list of all “TMP275” class Devices

X_Configuration

X_Configuration has to do with configuring the resource nodes. This is mapped to

• the standard main resource node path to navigate to the resource which is being configured

• and extending this with the special request “verb” /configure being added to the very end of the path

• GET -> get/read configuration slot (values)

• PUT -> set/write/update configuration slot (values)

After this, the detailed further selection of all X_Configuration slots is mapped via request query parameters and

their values. The names of the query parameters reflect the X_Configuration slot names.

Two different cases exist:

• Setting configuration slots

• Retrieving the current values of them

Setting values

The basic pattern for setting configuration values is like this:

 44
T-H-I-N-X - “Thing Server” concept 44

{SP_URI}/{resourcepath}/configure?{resourceslot}={RESOURCEVALUE}

The parameter {resourcepath} is to be specified correct to access the Devices, TouchPoints, Controllers and

Extensions. For the ServicePoint, it is just empty.

For better readability predefined slot names {resourceslot} use lowercase and slot values

{RESOURCEVALUE} use uppercase (if applicable, digits remain digits). Configuration slots that are

<parameters> use the parameter name and value with such a pattern:

{SP_URI}/{resourcepath}/configure?parameter={paramName}&value={PARAMVALUE}

An example for a configuration value setting of a TP_Configuration slot <function> is:

http://my.domain:8000/devices/mydevice/digital/1/configure?function=IN

More than one slot/parameter is possible like this for the slots <termination> and <detection>:

.../digital/1/configure?termination=PULLUP&detection=ONDOWN

An example for a configuration value setting of a D_Configuration and a parameter named “resolution” is:

http://my.domain:8000/devices/.../sensor/temperature/configure?

parameter=resolution&value=11

An example for a configuration value setting of a C_Configuration for a controller named “main” is:

http://my.domain:8000/controllers/main/configure?parameter=looptime&value=500

If some value is too long for the URL it may be put into the request payload as JSON object and have an according

hint “PAYLOAD” in the query parameter value like this SP_Configuration:

http://my.domain:8000/configure?parameter=encryption&value=PAYLOAD

Retrieving values

The basic pattern for getting configuration values is like this:

{SP_URI}/{resourcepath}/configure?query={resourceslot,s}

Here, the predefined query parameter query is used and its value is just the name(s) of the configuration slot(s)

{resourceslot,s} used in the same way as for setting the slot values. The result value is in the response

payload as plain text or JSON object.

An example for a configuration value reading form a TP_Configuration is:

http://my.domain:8000/devices/mydevice/digital/1/configure?query=function

The result payload in this case would be IN, OUT or INOUT.

If more than one configuration value is requested this is possible by requesting them with a list of slot names:

{SP_URI}/{resourcepath}/configure?query={resourceslot1},{resourceslot2}

or by just requesting them all via a special query value of “*”:

{SP_URI}/{resourcepath}/configure?query=*

The result for multiple slot retrieving is a JSON object containing all configuration key/value pairs.

An example for multiple configuration value reading from a TP_Configuration is:

http://my.domain:8000/.../digital/1/configure?query=function,termination

 45
T-H-I-N-X - “Thing Server” concept 45

TP_Configuration

Within TouchPoint configurations two special slots exist that have to do with units <unit> and mathematical types

<mathematicalType>. In order to utilize these slots dedicated query parameters are used to map this.

Units can be used with the dedicated query parameter “unit”. Many TouchPoint (channels) have a fixed default

unit (e.g. Kelvin for temperature). When reading and setting the value of such TouchPoints and no unit is given,

then the values are assumed to be in that default unit. If any other unit should be used, this can be achieved by

adding this unit via a query parameter resulting in this pattern:

{SP_URI}/.../{category}[/{aspect}][/{chan/nel}][/{value}]?unit={Unit}

Examples for units are:

• C (Celsius)

• mm (Millimeter)

• A (Ampere)

• ...

Units should be written in the case that is common sense enforced by international physics etc. standards

(recommended is ISO 80000 series standard). An example for value reading from a temperature sensor

TouchPoint is:

http://my.domain:8000/devices/mydevice/sensor/temperature

which will read the temperature in the default unit (assuming this is Kelvin).

In contrast, this

http://my.domain:8000/devices/mydevice/sensor/temperature?unit=C

will read the temperature in the specified unit (Celsius).

Mathematical types can be used with the dedicated query parameter “type”. Many TouchPoint (channels) have a

fixed default mathematical type (e.g. Floating point for DAC/ADC converters). When reading and setting the value

of such TouchPoints and no mathematical type is given, then the values are assumed to be in that default type. If

any other type should be used, this can be achieved by adding this type information as query parameter resulting

in this pattern:

{SP_URI}/.../{category}[/{aspect}][/{chan/nel}][/{value}]?type=

{MATHEMATICALTYPE}

Examples for mathematical types are:

• INTEGER

• FLOAT

• BOOLEAN

• RATIO

• ANGLE

• ...

Mathematical types should be written in uppercase. An example for value reading from an analog channel (with

number 2) TouchPoint is:

http://my.domain:8000/devices/mydevice/analog/2

This will read the analog value in the default type (Float).

In contrast, this

 46
T-H-I-N-X - “Thing Server” concept 46

http://my.domain:8000/devices/mydevice/analog/2?type=INTEGER

will read the analog value in the specified type (Integer).

The same applies when setting the analog value:

http://my.domain:8000/devices/mydevice/analog/2/2.5

versus

http://my.domain:8000/devices/mydevice/analog/2/511?type=INTEGER

Situations may exist where both mechanisms (units and mathematical types) are being used in combination like:

{SP_URI}/.../...?unit={Unit}&type={MATHEMATICALTYPE}

The common rule is that setting and getting values has to be possible without any additional query parameters

for the most frequently standard used cases.

Creating and destroying a Device at runtime

It is possible to create a Device node at runtime. This is mapped to the basic pattern:

• {SP_URI}/devices/create?class={ClassName}&name={devicename}

• and the usage of the HTTP verb POST.

In the case that an additional address is necessary this can be attached at the end. An example for the dynamic

creation of a temperature sensor Device of class “TMP75” with the name “tmp1” and the I2C slave address

“0x4A” would be:

{SP_URI}/devices/create?class=TMP75&name=tmp1&address=0x4A

It is possible to destroy a Device node at runtime. This is mapped to the basic pattern:

• {SP_URI}/devices/destroy?name={devicename}

• and the usage of the HTTP verb DELETE.

An example for the dynamic destruction of the temperature sensor Device just created above would be:

{SP_URI}/devices/destroy?name=tmp1

The practical benefit of creating and destroying Devices at via the REST API would be the implementation of a

web-based configuration console for an IoT server instance. During a test or configuration phase, all Devices could

be created and configured until they fit to all needs. After that, the configuration setup could be saved to any kind

of static resource (e.g. written to a file) and then reused without console-based manual configuration.

X_Features

X_Features has to do with activating or triggering something on the resource nodes (like running some command

or firing some event). This is mapped to

• the standard main resource node path to navigate to the resource which provides the intended feature,

• extending this with the special request “verbs” being added to the very end of the path,

• in contrast to X_Configuration, the verbs are now derived from the feature slot names (like e.g. /run for

the <runnables> slots,

• plus all other information being submitted by a set of query parameters,

• and finally POST for the HTTP/CoAP verb as something is being created (temporarily) on the resource

node.

 47
T-H-I-N-X - “Thing Server” concept 47

<runnables>

For all <runnables> slots, this looks like this:

{SP_URI}/{resourcepath}/run?method={methodName}

As {methodName} is the identifier of some kind of executable code is has to be written exactly like the case-

sensitive name of that piece of code (e.g. some procedure name).

When parameters are needed for the methods, this can be extended with either sequential values separated by

commas:

{SP_URI}/{resourcepath}/run?method={methodName}&arguments={ARG,VALU,ES}

or explicit named parameters like this:

{SP_URI}/{resourcepath}/run?method={methodName}&arguments={VALUE1,VALUE2}&arg

ument_names={arg1,arg2}

If named parameters are used, they have also to be written in the exact case-sensitive way as in the original

source code. As a rule of thumb, the values of those parameters should be either numbers or strings that are

case-insensitive.

An example for a runnable feature of a TP_Feature is:

http://my.domain:8000/.../digital/1/run?method=sequence&arguments=10,1,0,1,0

An example for a runnable feature of a D_Feature is:

http://my.domain:8000/devices/mydevice/run?method=calibrate

or

http://my.domain:8000/devices/mydevice/run?method=wake

or

http://my.domain:8000/devices/mydevice/run?method=sleep&arguments=2000&argume

nt_names=time

<events>

For <events> slots, this looks like this:

{SP_URI}/{resourcepath}/event?name={eventName}&action={FIRE/CANCEL/HIDE/...}

<logs>

For <logs> slots, this looks like this:

{SP_URI}/{resourcepath}/log?name={logName}&read=100

The same pattern can be used for all other X-Features slots. But not every X_Feature has to be exposed via the

REST API.

Extension

The extension resource node is mapped with the basic resource path

• {SP_URI}/extensions/{extensionName}

• and the usage of the HTTP verb GET and POST.

The {extensionName} is the <name> slot value of the Extension node. To some extent, extensions have

some kind of similarity with runnable features. The main difference is that runnable features are directly attached

to their respective sub nodes and really execute a bit of code whereas Extensions are a more abstract concept

 48
T-H-I-N-X - “Thing Server” concept 48

with their own primary node type and may be much more than just a small piece of code that gets executed. Big

Extensions may even represent a complete deployable package or a complete subsystem (-> reference to TOSCA)

running on the Things Server in its own threads that gets started.

The Extension resource node is mapped with the basic resource path:

{SP_URI}/extensions/{extensionName}

which answers the whole Extension is any kind of appropriate format.

The activation/execution of an Extension is mapped to the path /run in the same way as the features with the

difference that now the method query parameter is not needed. And, in some cases the activation of an

Extension also needs one or more parameters. This is mapped identically to the other /run paths so we end up

with:

{SP_URI}/extensions/{extensionname}/run?arguments={...}&argument_names={...}

Once again, the usage of argument_names is optional.

Controller

The Controller resource node is mapped with the basic resource path:

{SP_URI}/controllers/{controllername}

If only one (default) Controller node does exist, the predefined name “main” is used for {controllername}.

Otherwise the name/id of the main process of a distinct controller has to be used but this will occur very seldom.

An example to retrieve some default Controller parameters from C_Configuration would be:

{SP_URI}/controllers/main/configure?query=board-revision

or

{SP_URI}/controllers/main/configure?query=coap-multicast

An example to set some default Controller parameters for C_Configuration would be:

{SP_URI}/controllers/main/configure?parameter=coap-multicastval&value=TRUE

An example to activate some default controller <runnables> from C_Features would be:

{SP_URI}/controllers/main/run?method=setup

or

{SP_URI}/controllers/main/run?method=destroy

If just the complete state of the default controller is requested and enforced to a JSON result, this can be done by:

{SP_URI}/controllers/main/*.json

Alias

After all the dedicated mappings above, there is finally a special case to simplify things a bit. An Alias has no

specific resource path prefix but MUST NOT overlap with all other mappings. For this reason, the first rule is that

aliases starting with the reserved names /devices, /controllers and /extensions are forbidden. The

second rule is that every alias must have an original path that is valid within the current resource tree. The third

rule is that for the sake of simplicity an alias can only substitute a resource path without any additional query

parameters.

An example for a valid Alias would be to substitute this technical path

http://my.domain:8000/devices/mydevice/digital/output/12

 49
T-H-I-N-X - “Thing Server” concept 49

with such an “aliased” path:

http://my.domain:8000/lights/livingroom/ceiling

It could be also valid to substitute this alternatively by

http://my.domain:8000/livingroom/lights/ceiling

and have another Alias being

http://my.domain:8000/livingroom/temperature/floor

which could be an Alias for the technical path

http://my.domain:8000/devices/myotherdevice/sensor/temperature/2

At the bottom line the concept of “Aliasing” will allow to have a separate real/physical/logical resource path

model of some entity (e.g. a building) and to decouple this from the technical resource path model described

above. Plus, it allows giving some resources a constant logical name whereas their technical mapping can be

modified over time.

Result and payload type enforcement

In order to allow the enforcement of result and payload mime types it is possible to do this by adding a payload

type marker to the URL. This is done by extending the URL path with this pattern:

{SP_URI}/{resourcepath}.{payloadmarker}...

The {payloadmarker} gets directly attached post fixed to the resource path with a leading . separator and

has to be inserted BEFORE any query parameters. Possible payload markers are

• txt ->plain text result

• json -> JSON object result

• xml -> XML result

As noted already above, a possibility to get the list of all TouchPoints for a Device is:

{SP_URI}/devices/mydevice/*

By default, this will answer the result as JSON Object. To enforce the result being a XML structure, this can be

specified in such a way:

{SP_URI}/devices/mydevice/*.xml

Or, it could be also possible to request this in plain text:

{SP_URI}/devices/mydevice/*.txt

Error and exception handling

Text tbd.

Additional resources

Swagger Specification of the REST API

Remarks

The mapped API from above can be described formally with a Swagger spec [SWAGGER_2014]. The spec below

relies on Version 2 of the Swagger spec and uses the YAML [YAML_2015] representation of it as YAML is better

human readable and less verbose that pure JSON. It has been edited and validated with the Swagger editor online

 50
T-H-I-N-X - “Thing Server” concept 50

tool [SWAGGER_EDITOR_2015] as long as possible but the latest version from below comes with some

restrictions that hopefully disappear over time:

• Currently it can’t be edited with the online tool as this tool does not support the “$ref” element for

parameter elements on operations level correct at the time of this release. This is a confirmed bug of

Swagger.

• Some other parts of the Swagger 2.0 spec are officially not supported by the Swagger editor at the time of

this writing but do not cause any problems (e.g. Enums). For this, these parts are within the spec but they

could not be validated so far.

• Some elements of the resource path are optional (e.g. {aspect}) but the Swagger spec does not allow this so

far. For this reason some of the paths have been documented in the full breadth of all possible combinations

as a (hopefully) temporary workaround.

• Some concepts of the API are currently not included in the spec. Namely the APIs for the events and logs

resource slots and the payload enforcement indicator.

• The (JSON) schema part of the Swagger spec (“definitions: ...”) is currently only rudimentary contained to

show its basic purpose. As soon as the final JSON schema for T-H-I-N-X is available it will be substituted by this

version.

• The error and response handling is currently very simplified.

Specification in YAML format

Copyright 2015 Andreas Riegg - t-h-i-n-x.net

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

This is the YAML source of the T-H-I-N-X REST API based on Swagger 2.0

Changelog

1.0.0 2015-03-17 Initial release.

swagger: '2.0'

Basic information and copyright

info:
 title: T-H-I-N-X REST API

 description: API proposal suited for the generalized T-H-I-N-X IoT resources model.
 termsOfService: n/a

 version: "1.0.0"
 contact:

 name: Andreas Riegg
 url: http://www.t-h-i-n-x.net/

 email: brain@t-h-i-n-x.net
 license:

 name: Apache 2.0
 url: http://www.apache.org/licenses/LICENSE-2.0.html

Top-level attributes of the API

 51
T-H-I-N-X - “Thing Server” concept 51

The domain of the service, change this for any other URL when using any kind of live request generating
toolset

host: api.t-h-i-n-x.net:8000

E.g. for a connection via Weaved this may be something like
host: abcxyz.p2.yoics.net:8000

schemes:

- http
- https

- ws
- wss

- coap (added for later inclusion, currently not supported by the Swagger spec)

basePath: /v100

securityDefinitions:
 basicAuth:

 type: basic
 description: HTTP Basic Authentication with userid and password.

security:

- basicAuth: []

consumes:

- text/plain
- application/json

produces:

- text/plain
- application/json

tags:

- name: ServicePoint
 description: ServicePoint resource operation

- name: Device
 description: Device resource operation

- name: TouchPoint
 description: TouchPoint resource operation

- name: Controller
 description: Controller resource operation

- name: Extension
 description: Extension resource operation

- name: Alias
 description: Alias resource operation

- name: Relations
 description: Relations navigating operation

- name: Configuration

 description: Configuration handling operation
- name: Feature

 description: Feature management operation
- name: (C)

 description: Create operation
- name: (R)

 description: Read operation
- name: (W)

 description: Write operation
- name: (D)

 description: Delete operation
- name: (X)

 description: Execution operation

Parameters defined at top level for reuse via ref-element in many APIs
--

parameters:

 devicenamePathParam:
 name: devicename

 in: path
 description: The value of the <name> slot of a Device.

 required: true
 type: string

 categoryPathParam:

 name: category
 in: path

 description: >
 The value of the <category> slot of a TouchPoint in lowercase characters. Examples for

categories are
 digital, bitstream, analog, waveform, sensor, clock, memory, id, interface, bus.

 required: true

 52
T-H-I-N-X - “Thing Server” concept 52

 type: string
 enum:

 - digital
 - bitstream

 - analog
 - waveform

 - sensor
 - clock

 - memory
 - id

 - interface
 - bus

 categoryQueryParam:
 name: category

 in: query
 description: >

 The value of the <category> slot of a TouchPoint in lowercase characters. Examples for
categories are

 digital, bitstream, analog, waveform, sensor, clock, memory, id, interface, bus.
 required: false

 type: string
 enum:

 - digital
 - bitstream

 - analog

 - waveform
 - sensor

 - clock
 - memory

 - id
 - interface

 - bus
 aspectPathParam:

 name: aspect
 in: path

 description: >
 The value of the <aspect> slot of a TouchPoint. Examples for aspects are input, output,

 pwm, temperature, pressure, date, time, byte, word etc.
 required: true

 type: string
 aspectQueryParam:

 name: aspect
 in: query

 description: >
 The value of the <aspect> slot of a TouchPoint. Examples for aspects are input, output,

 pwm, temperature, pressure, date, time, byte, word etc.
 required: false

 type: string

 channelPathParam:
 name: channel

 in: path
 description: >

 The value of the <channel> slot of a TouchPoint. Channels are strings and can be any mixture
of

 alphanumeric letters. Examples for channels are 2, 13, relais1, relative, x, y, z, visible etc.
 required: true

 type: string
 valuePathParam:

 name: value
 in: path

 description: The new value of the TouchPoint channel.
 required: true

 type: string
 valueBodyParam:

 name: b_value
 in: body

 description: The new value of the TouchPoint channel.
 required: false

 schema:
 type: string

 unitQueryParam:
 name: unit

 in: query

 description: >
 The value of the <unit> slot of a TouchPoint in mixed case characters and noted

 according to the ISO 80000 series standards. Units are strings and can be any mixture of
 alphanumeric letters. Examples for units are mm, s, V, A.

 If unit is omitted, the TouchPoint value will be answered in its default unit.
 required: false

 type: string

 53
T-H-I-N-X - “Thing Server” concept 53

 typeQueryParam:
 name: type

 in: query
 description: >

 The value of the <mathematicalType> slot of a TouchPoint in uppercase characters.
 If omitted, the value will be answered in its default type.

 Possible values are INTEGER, FLOAT, BOOL, BIN, OCT, HEX, DATE, TIME, TEXT.
 required: false

 type: string
 methodQueryParam:

 name: method
 in: query

 description: The identifier of a <runnable> of a Resource node.
 required: true

 type: string
 argumentsQueryParam:

 name: arguments
 in: query

 description: A comma-separated list of arguments for a Resource node feature.
 required: false

 type: array
 items:

 type: string
 collectionFormat: csv

 argumentNamesQueryParam:

 name: argument_names
 in: query

 description: A comma-separated list of argument names for a Resource node feature.
 required: false

 type: array
 items:

 type: string
 collectionFormat: csv

 functionQueryParam:
 name: function

 in: query
 description: The <function> slot of a TouchPoint channel.

 required: false
 type: string

 enum:
 - IN

 - OUT
 - INOUT

 terminationQueryParam:
 name: termination

 in: query
 description: The <termination> slot of a TouchPoint channel.

 required: false

 type: string
 enum:

 - PULLUP
 - PULLDOWN

 - NONE
 detectionQueryParam:

 name: detection
 in: query

 description: The <detection> slot of a TouchPoint channel.
 required: false

 type: string
 enum:

 - ONUP
 - ONDOWN

 - NONE
 queryQueryParam:

 name: query
 in: query

 description: >
 The name(s) of a configuration slot of a Resource node. If more than one slot is requested

 the names are separated by commas. If all slots are required then use "*" for this parameter.
 required: false

 type: array
 items:

 type: string

 collectionFormat: csv
 parameterQueryParam:

 name: parameter
 in: query

 description: The name of a <parameter> configuration slot of a Resource node.
 required: false

 type: string

 54
T-H-I-N-X - “Thing Server” concept 54

 valueQueryParam:
 name: value

 in: query
 description: The value of a <parameter> configuration slot of a Resource node.

 required: false
 type: string

 extensionnamePathParam:
 name: extensionname

 in: path
 description: The value of the <name> slot of an Extension.

 required: true
 type: string

 controllernamePathParam:
 name: controllername

 in: path
 description: The value of the <name> slot of a Controller.

 required: true
 type: string

REST API resources paths

paths:

ServicePoint node

 /configure:

 get:
 summary: ServicePoint configuration retrieval

 description: This request answers the value(s) of ServicePoint configuration slot(s).
 parameters:

 - $ref: '#/parameters/queryQueryParam'
 tags:

 - ServicePoint
 - Configuration

 - (R)
 responses:

 200:
 description: The new value of the parameter.

 schema:
 type: string

 default:
 description: Any kind of error

 put:

 summary: ServicePoint configuration update

 description: This request updates the value of a ServicePoint configuration slot.
 parameters:

 - $ref: '#/parameters/parameterQueryParam'
 - $ref: '#/parameters/valueQueryParam'

 tags:
 - ServicePoint

 - Configuration
 - (W)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error

Device node

 /devices/*:

 get:
 summary: Device listing

 description: >
 This request answers a complete or selected list of all existing Devices in the form of a JSON

array.

 The simple list just contains array entries with all unique device names.
 The abstracted list contains array entries with JSON objects that give the Device name and

resource abstractions of a device {name:type:}.
 The abstraction results from the <category> and <aspect> of the TouchPoints of each

Device.
 If a device provides more than one abstraction, then a separate JSON object is returned for each

abstraction type.

 55
T-H-I-N-X - “Thing Server” concept 55

 The full list contains array entries with complete JSON representations of each Device.
 parameters:

 - name: scope
 in: query

 description: The scope of the list. Possible values are simple, abstracted and full. If omitted,
the list will be answered in its default scope which is abstracted.

 required: false
 type: string

 enum:
 - simple

 - abstracted
 - full

 - name: class
 in: query

 description: The Device class to be selected for the list.
 required: false

 type: string
 - $ref: '#/parameters/categoryQueryParam'

 - $ref: '#/parameters/aspectQueryParam'
 tags:

 - Device
 - TouchPoint

 - Relations
 - (R)

 responses:

 200:
 description: A Device list.

 schema:
 type: array

 items:
 $ref: '#/definitions/AbstractedDevice'

 default:
 description: Any kind of error

 /devices/create:

 post:
 summary: Device creation

 description: This request creates a Device.
 parameters:

 - name: class
 in: query

 description: The Device class to be created.
 required: true

 type: string
 - name: name

 in: query
 description: The name of the Device to be created.

 required: true

 type: string
 - name: address

 in: query
 description: The address of the Device to be created.

 required: false
 type: string

 tags:
 - Device

 - (C)
 responses:

 200:
 description: Successful Device creation

 default:
 description: Any kind of error

 /devices/destroy:

 delete:
 summary: Device deletion

 description: This request deletes a Device.
 parameters:

 - name: name
 in: query

 description: The name of the Device to be destroyed.
 required: true

 type: string

 tags:
 - Device

 - (D)
 responses:

 200:
 description: Successful Device destruction

 default:

 56
T-H-I-N-X - “Thing Server” concept 56

 description: Any kind of error

 /devices/{devicename}:

 get:
 summary: Device retrieval

 description: This request answers a named Device in the form of a JSON object.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 tags:

 - Device
 - (R)

 responses:
 200:

 description: The named Device object.
 schema:

 $ref: '#/definitions/SimpleDevice'
 default:

 description: Any kind of error

 /devices/{devicename}/configure:

 get:
 summary: Device configuration retrieval

 description: This request answers the value(s) of Device configuration slot(s).

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/queryQueryParam'
 tags:

 - Device
 - Configuration

 - (R)
 responses:

 200:
 description: The new value of the parameter.

 schema:
 type: string

 default:
 description: Any kind of error

 put:

 summary: Device configuration update
 description: This request updates the value of a Device configuration slot.

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - name: address
 in: query

 description: The value of a <address> configuration slot of a Device.

 required: false
 type: string

 - $ref: '#/parameters/parameterQueryParam'
 - $ref: '#/parameters/valueQueryParam'

 tags:
 - Device

 - Configuration
 - (W)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/run:

 post:
 summary: Device feature execution

 description: This request triggers the execution of a Device feature.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/methodQueryParam'

 - $ref: '#/parameters/argumentsQueryParam'

 - $ref: '#/parameters/argumentNamesQueryParam'
 tags:

 - Device
 - Feature

 - (X)
 responses:

 200:

 57
T-H-I-N-X - “Thing Server” concept 57

 description: Device feature result object.
 schema:

 type: string
 default:

 description: Any kind of error

TouchPoint node

 /devices/{devicename}/*:
 get:

 summary: TouchPoint listing
 description: >

 This request answers a complete or selected list of all existing TouchPoints for a
 named Device in the form of a JSON array. The array entries are complete JSON representations of

each TouchPoint.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - name: category

 in: query
 description: The TouchPoint category to be selected for the list.

 required: false
 type: string

 enum:

 - digital
 - bitstream

 - analog
 - waveform

 - sensor
 - clock

 - memory
 - id

 - interface
 - bus

 - name: aspect
 in: query

 description: The TouchPoint aspect to be selected for the list.
 required: false

 type: string
 tags:

 - Device
 - TouchPoint

 - Relations
 - (R)

 responses:
 200:

 description: A TouchPoint list.

 default:
 description: Any kind of error

 /devices/{devicename}/{category}/*:

 get:
 summary: TouchPoint category specific channel listing.

 description: >
 This request answers the list of all existing channels for a TouchPoint with a specific category

for a named Device in
 the form of a JSON array. The array entries are JSON objects that give the channel names and

 channel values {channel:value:}.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 tags:
 - TouchPoint

 - (R)
 responses:

 200:
 description: The current channel list of the selected TouchPoint.

 schema:
 type: string

 default:
 description: Any kind of error

 /devices/{devicename}/{category}/{aspect}/*:

 get:
 summary: TouchPoint channel listing.

 description: >
 This request answers the list of all existing channels for a TouchPoint for a named Device in

 the form of a JSON array. The array entries are JSON objects that give the channel names and

 58
T-H-I-N-X - “Thing Server” concept 58

 channel values {channel:value:}.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/aspectPathParam'
 tags:

 - TouchPoint
 - (R)

 responses:
 200:

 description: The current channel list of the selected TouchPoint.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{aspect}/{channel}:

 get:
 summary: This request answers a TouchPoint value (full c/a/c path).

 description: >
 This request retrieves the current value of a TouchPoint. The

 concrete TouchPoint is addressed by the path category/aspect/channel.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/categoryPathParam'
 - $ref: '#/parameters/aspectPathParam'

 - $ref: '#/parameters/channelPathParam'
 - $ref: '#/parameters/unitQueryParam'

 - $ref: '#/parameters/typeQueryParam'
 tags:

 - TouchPoint
 - (R)

 responses:
 200:

 description: The current value of the selected TouchPoint channel.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{aspect}/{channel}/{value}:

 put:
 summary: This request updates the current value of a TouchPoint (full c/a/c path).

 description: >
 This request writes the current value of a TouchPoint. The

 concrete TouchPoint is addressed by the path category/aspect/channel.

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/categoryPathParam'
 - $ref: '#/parameters/aspectPathParam'

 - $ref: '#/parameters/channelPathParam'
 - $ref: '#/parameters/valuePathParam'

 - $ref: '#/parameters/valueBodyParam'
 - $ref: '#/parameters/unitQueryParam'

 - $ref: '#/parameters/typeQueryParam'
 tags:

 - TouchPoint
 - (W)

 responses:
 200:

 description: The new value of the selected TouchPoint channel.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{aspect}:

 get:
 summary: This request answers a TouchPoint value (partial c/a path).

 description: >

 This request retrieves the current value of a TouchPoint. The
 concrete TouchPoint is addressed by the path category/aspect.

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/categoryPathParam'
 - $ref: '#/parameters/aspectPathParam'

 - $ref: '#/parameters/unitQueryParam'

 59
T-H-I-N-X - “Thing Server” concept 59

 - $ref: '#/parameters/typeQueryParam'
 tags:

 - TouchPoint
 - (R)

 responses:
 200:

 description: The current value of the selected TouchPoint channel.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{aspect}/{value}:

 put:
 summary: This request updates the current value of a TouchPoint (partial c/a path).

 description: >
 This request writes the current value of a TouchPoint. The

 concrete TouchPoint is addressed by the path category/aspect.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/aspectPathParam'
 - $ref: '#/parameters/valuePathParam'

 - $ref: '#/parameters/valueBodyParam'

 - $ref: '#/parameters/unitQueryParam'
 - $ref: '#/parameters/typeQueryParam'

 tags:
 - TouchPoint

 - (W)
 responses:

 200:
 description: The new value of the selected TouchPoint channel.

 schema:
 type: string

 default:
 description: Any kind of error

 /devices/{devicename}/{category}/{channel}:
 get:

 summary: This request answers a TouchPoint value (partial c/c path).
 description: >

 This request retrieves the current value of a TouchPoint. The
 concrete TouchPoint is addressed by the path category/channel.

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/channelPathParam'
 - $ref: '#/parameters/unitQueryParam'

 - $ref: '#/parameters/typeQueryParam'
 tags:

 - TouchPoint
 - (R)

 responses:
 200:

 description: The current value of the selected TouchPoint channel.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{channel}/{value}:

 put:
 summary: This request updates the current value of a TouchPoint (partial c/c path).

 description: >
 This request writes the current value of a TouchPoint. The

 concrete TouchPoint is addressed by the path category/channel.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/channelPathParam'

 - $ref: '#/parameters/valuePathParam'
 - $ref: '#/parameters/valueBodyParam'

 - $ref: '#/parameters/unitQueryParam'
 - $ref: '#/parameters/typeQueryParam'

 tags:
 - TouchPoint

 - (W)

 60
T-H-I-N-X - “Thing Server” concept 60

 responses:
 200:

 description: The new value of the selected TouchPoint channel.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}:

 get:
 summary: This request answers a TouchPoint value (partial c path).

 description: >
 This request retrieves the current value of a TouchPoint. The

 concrete TouchPoint is addressed by the path category/channel.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/unitQueryParam'
 - $ref: '#/parameters/typeQueryParam'

 tags:
 - TouchPoint

 - (R)
 responses:

 200:

 description: The current value of the selected TouchPoint channel.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{value}:

 put:
 summary: This request updates the current value of a TouchPoint (partial c path).

 description: >
 This request writes the current value of a TouchPoint. The

 concrete TouchPoint is addressed by the path category/channel.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/valuePathParam'
 - $ref: '#/parameters/valueBodyParam'

 - $ref: '#/parameters/unitQueryParam'
 - $ref: '#/parameters/typeQueryParam'

 tags:
 - TouchPoint

 - (W)

 responses:
 200:

 description: The new value of the selected TouchPoint channel.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{aspect}/{channel}/run:

 post:
 summary: TouchPoint feature execution (full c/a/c path)

 description: This request triggers the execution of a TouchPoint feature.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/aspectPathParam'
 - $ref: '#/parameters/channelPathParam'

 - $ref: '#/parameters/methodQueryParam'
 - $ref: '#/parameters/argumentsQueryParam'

 - $ref: '#/parameters/argumentNamesQueryParam'
 tags:

 - TouchPoint
 - Feature

 - (X)

 responses:
 200:

 description: TouchPoint feature result object.
 schema:

 type: string
 default:

 description: Any kind of error

 61
T-H-I-N-X - “Thing Server” concept 61

 /devices/{devicename}/{category}/{aspect}/run:
 post:

 summary: TouchPoint feature execution (partial c/a path)
 description: This request triggers the execution of a TouchPoint feature.

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/categoryPathParam'
 - $ref: '#/parameters/aspectPathParam'

 - $ref: '#/parameters/methodQueryParam'
 - $ref: '#/parameters/argumentsQueryParam'

 - $ref: '#/parameters/argumentNamesQueryParam'
 tags:

 - TouchPoint
 - Feature

 - (X)
 responses:

 200:
 description: TouchPoint feature result object.

 schema:
 type: string

 default:
 description: Any kind of error

 /devices/{devicename}/{category}/{channel}/run:

 post:
 summary: TouchPoint feature execution (partial c/c path)

 description: This request triggers the execution of a TouchPoint feature.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/channelPathParam'
 - $ref: '#/parameters/methodQueryParam'

 - $ref: '#/parameters/argumentsQueryParam'
 - $ref: '#/parameters/argumentNamesQueryParam'

 tags:
 - TouchPoint

 - Feature
 - (X)

 responses:
 200:

 description: TouchPoint feature result object.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/run:
 post:

 summary: TouchPoint feature execution (partial c path)
 description: This request triggers the execution of a TouchPoint feature.

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/categoryPathParam'
 - $ref: '#/parameters/methodQueryParam'

 - $ref: '#/parameters/argumentsQueryParam'
 - $ref: '#/parameters/argumentNamesQueryParam'

 tags:
 - TouchPoint

 - Feature
 - (X)

 responses:
 200:

 description: TouchPoint feature result object.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{aspect}/{channel}/configure:
 get:

 summary: TouchPoint configuration retrieval (full c/a/c path)
 description: This request answers the value of a TouchPoint configuration slot.

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/categoryPathParam'

 62
T-H-I-N-X - “Thing Server” concept 62

 - $ref: '#/parameters/aspectPathParam'
 - $ref: '#/parameters/channelPathParam'

 - $ref: '#/parameters/queryQueryParam'
 tags:

 - TouchPoint
 - Configuration

 - (R)
 responses:

 200:
 description: The new value of the parameter.

 schema:
 type: string

 default:
 description: Any kind of error

 put:
 summary: TouchPoint configuration update (full c/a/c path)

 description: This request updates the value of a TouchPoint configuration slot.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/aspectPathParam'
 - $ref: '#/parameters/channelPathParam'

 - $ref: '#/parameters/functionQueryParam'
 - $ref: '#/parameters/terminationQueryParam'

 - $ref: '#/parameters/detectionQueryParam'

 - $ref: '#/parameters/parameterQueryParam'
 - $ref: '#/parameters/valueQueryParam'

 tags:
 - TouchPoint

 - Configuration
 - (W)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{aspect}/configure:

 get:
 summary: TouchPoint configuration retrieval (partial c/a path)

 description: This request answers the value(s) of TouchPoint configuration slot(s).
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/aspectPathParam'

 - $ref: '#/parameters/queryQueryParam'
 tags:

 - TouchPoint
 - Configuration

 - (R)
 responses:

 200:
 description: The value(s) of the parameter(s).

 schema:
 type: string

 default:
 description: Any kind of error

 put:
 summary: TouchPoint configuration update (partial c/a path)

 description: This request updates the value of a TouchPoint configuration slot.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/aspectPathParam'
 - $ref: '#/parameters/functionQueryParam'

 - $ref: '#/parameters/terminationQueryParam'
 - $ref: '#/parameters/detectionQueryParam'

 - $ref: '#/parameters/parameterQueryParam'
 - $ref: '#/parameters/valueQueryParam'

 tags:

 - TouchPoint
 - Configuration

 - (W)
 responses:

 200:
 description: The new value of the parameter.

 schema:

 63
T-H-I-N-X - “Thing Server” concept 63

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/{channel}/configure:

 get:
 summary: TouchPoint configuration retrieval (partial c/c path)

 description: This request answers the value of a TouchPoint configuration slot.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/channelPathParam'
 - $ref: '#/parameters/queryQueryParam'

 tags:
 - TouchPoint

 - Configuration
 - (R)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error

 put:
 summary: TouchPoint configuration update (partial c/c path)

 description: This request updates the value of a TouchPoint configuration slot.
 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/channelPathParam'
 - $ref: '#/parameters/functionQueryParam'

 - $ref: '#/parameters/terminationQueryParam'
 - $ref: '#/parameters/detectionQueryParam'

 - $ref: '#/parameters/parameterQueryParam'
 - $ref: '#/parameters/valueQueryParam'

 tags:
 - TouchPoint

 - Configuration
 - (W)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error

 /devices/{devicename}/{category}/configure:
 get:

 summary: TouchPoint configuration retrieval (partial c path)
 description: This request answers the value of a TouchPoint configuration slot.

 parameters:
 - $ref: '#/parameters/devicenamePathParam'

 - $ref: '#/parameters/categoryPathParam'
 - $ref: '#/parameters/queryQueryParam'

 tags:
 - TouchPoint

 - Configuration
 - (R)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error
 put:

 summary: TouchPoint configuration update (partial c path)
 description: This request updates the value of a TouchPoint configuration slot.

 parameters:

 - $ref: '#/parameters/devicenamePathParam'
 - $ref: '#/parameters/categoryPathParam'

 - $ref: '#/parameters/functionQueryParam'
 - $ref: '#/parameters/terminationQueryParam'

 - $ref: '#/parameters/detectionQueryParam'
 - $ref: '#/parameters/parameterQueryParam'

 - $ref: '#/parameters/valueQueryParam'

 64
T-H-I-N-X - “Thing Server” concept 64

 tags:
 - TouchPoint

 - Configuration
 - (W)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error

Extension node

 /extensions/{extensionname}:
 get:

 summary: Extension retrieval
 description: This request answers a named Extension in the form of a JSON object.

 parameters:
 - $ref: '#/parameters/extensionnamePathParam'

 tags:
 - Extension

 - (R)

 responses:
 200:

 description: The named Extension object.
 schema:

 type: string
 default:

 description: Any kind of error

 /extensions/{extensionname}/run:

 post:
 summary: Extension execution

 description: >
 This request triggers the execution of an Extension.

 If the Extension has one ore more arguments their values can be submitted as comma-separated list.
 If additionally argument names can be submitted, this can be added by a comma-separated

 list of those names. The sequence of the argument values and argument names has to match.
 parameters:

 - $ref: '#/parameters/extensionnamePathParam'
 - $ref: '#/parameters/methodQueryParam'

 - $ref: '#/parameters/argumentsQueryParam'
 - $ref: '#/parameters/argumentNamesQueryParam'

 tags:

 - Extension
 - (X)

 responses:
 200:

 description: Extension execution result object.
 schema:

 type: string
 default:

 description: Any kind of error

Controller node

 /controllers/{controllername}/configure:
 get:

 summary: Controller configuration retrieval
 description: This request answers the value of a Controller configuration slot.

 parameters:
 - $ref: '#/parameters/controllernamePathParam'

 - $ref: '#/parameters/queryQueryParam'
 tags:

 - Controller
 - Configuration

 - (R)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error

 65
T-H-I-N-X - “Thing Server” concept 65

 put:

 summary: Controller configuration update
 description: This request updates the value of a Controller configuration slot.

 parameters:
 - $ref: '#/parameters/controllernamePathParam'

 - $ref: '#/parameters/parameterQueryParam'
 - $ref: '#/parameters/valueQueryParam'

 tags:
 - Controller

 - Configuration
 - (W)

 responses:
 200:

 description: The new value of the parameter.
 schema:

 type: string
 default:

 description: Any kind of error

 /controllers/{controllername}/run:

 post:
 summary: Controller feature execution

 description: This request triggers the execution of a Controller feature.

 parameters:
 - $ref: '#/parameters/controllernameParam'

 - $ref: '#/parameters/methodQueryParam'
 - $ref: '#/parameters/argumentsQueryParam'

 - $ref: '#/parameters/argumentNamesQueryParam'
 tags:

 - Controller
 - Feature

 - (X)
 responses:

 200:
 description: Device feature result object.

 schema:
 type: string

 default:
 description: Any kind of error

Alias node

 /{substitutionpath}:

 get:

 summary: Alias retrieval
 description: This request answers the value of an Alias path.

 parameters:
 - name: substitutionpath

 in: path
 description: The value of the <substitution> slot of an Alias.

 required: true
 type: string

 tags:
 - Alias

 - (R)
 responses:

 200:
 description: The result of the aliased request.

 schema:
 type: string

 default:
 description: Any kind of error

 /{substitutionpath}/{value}:
 put:

 summary: Alias update
 description: This request updates the value of the target of an Alias path.

 parameters:

 - name: substitutionpath
 in: path

 description: The value of the <substitution> slot of an Alias.
 required: true

 type: string
 - name: value

 in: path

 66
T-H-I-N-X - “Thing Server” concept 66

 description: The new value of the target of an aliased path.
 required: true

 type: string
 tags:

 - Alias
 - (W)

 responses:
 200:

 description: The new value of the aliased request.
 schema:

 type: string
 default:

 description: Any kind of error

Object model JSON schema definitions

Remark: Just a few for now to show how this works, the final version has to refer to the full T-H-I-N-X
JSON schema.

definitions:

Device node

 SimpleDevice:

 required:
 - name

 - class
 - address

 properties:
 name:

 type: string
 description: The value of the <name> slot of a Device.

 class:
 type: string

 description: The value of the <class> slot of a Device.
 address:

 type: string
 description: The value of the <address> slot of a Device.

 AbstractedDevice:

 required:
 - name

 - type
 properties:

 name:

 type: string
 description: The value of the <name> slot of a Device.

 type:
 type: string

 description: The value of the abstraction of a TouchPoint which is a unique value derived from the
<category> and/or <aspect> slot of a TouchPoint.

 enum:
 - Digital

 - Analog
 - PWM

 - Memory
 - Temperature

 - Pressure
 - Luminosity

 - Distance
 - Position

 - Acceleration
 - Gear

 - Orientation
 - Velocity

 - Humidity
 - Power

 - Current
 - Voltage

 - Frequency

 - Clock
 - ID

 - Interface
 - Bus

 67
T-H-I-N-X - “Thing Server” concept 67

Swagger UI toolset representation

The following picture shows a partial screenshot of the visual representation that gets generated out of the

Swagger spec:

If you click on “Try this operation” the following screen gets folded down for every API path:

 68
T-H-I-N-X - “Thing Server” concept 68

Here you can add the values for parameters (here, the “*” for the query parameter has been entered), see the

generated resulting API request, and, if clicking on “Send Request”, you can see the live result from this request

(which does not work in the example from above as the host “api.t-h-i-n-x.net” is just a placeholder and does not

exist in reality).

TODO: Update screenshot when [] bug gets corrected from Swagger UI.

Swagger.ed toolset representation

In addition to the tool from above another tool exists that allows a very dynamic interaction with Swagger specs

called “swagger.ed” [SWAGGER.ED_2015]. It gets delivered in the form of an extension for the Chrome browser.

The following picture shows a screenshot of the visual representation that gets generated by this tool out of the

Swagger spec:

 69
T-H-I-N-X - “Thing Server” concept 69

You get the complete API visualized in the form of a dynamically interactive graph. As the T-H-I-N-X API is already

very rich in details it is a bit hard to recognize that in this screenshot. However, it is possible to zoom into the view

like this (upper left quadrant of the view above) and see much more details in a readable form:

 70
T-H-I-N-X - “Thing Server” concept 70

Now, if you double-click on one of the nodes (e.g. onto the node “configure” north-east from the “Resources”

node that represents the root path), you will get a detail view that resembles the API view of the Swagger UI

toolset:

 71
T-H-I-N-X - “Thing Server” concept 71

This allows a very comfortable exploring navigation of any API.

 72
T-H-I-N-X - “Thing Server” concept 72

JSON mapping and serialization

The abstract resource model can be mapped to a corresponding JSON object structure.

JSON instance

An example for a possible JSON structure starting at the ServicePoint would be as follows. The nodes of the

resource model are marked in the color of the nodes from the resource model. X_Relation information is marked

yellow. X_Features aspects are not covered.

The example data for the JSON node values is derived from the WebIOPi implementation where possible.

{
 "thinx" : {

 "$version" : "2.0",
 "$copyright" : "Copyright 2014 Andreas Riegg",

 "$license" : "Apache 2.0",
 "servicepoint" : {

 "aliases" : [
 {

 "alias" : {
 "original" : "/devices/mcp1/digital/2",

 "substitution" : "/kitchen/switch/ceiling"
 }

 },
 {

 "alias" : {
 "original" : "/devices/mcp1/digital/5",

 "substitution" : "/kitchen/switch/wall"
 }

 },
 {

 "alias" : {
 "original" : "/devices/mcp1/digital/4",

 "substitution" : "/kitchen/lamp/ceiling"

 }
 },

 {
 "alias" : {

 "original" : "/devices/mcp1/digital/6",
 "substitution" : "/kitchen/lamp/wall"

 }
 }

],
 "controllers" : [

 {
 "controller" : {

 "bindings" : [
 {

 "connection" : "http://192.168.0.2:8000"
 },

 {
 "connection" : "coap://192.168.0.2:5683"

 },
 {

 "connection" : "coap://224.0.1.123:5683"
 }

],

 "firmwares" : [
 {

 "firmware" : {
 "os" : "linux-wheezy-armv6l",

 "platform" : "armhf-raspberrypi",
 "server" : "WebIOPi-0.7.0-py2.7"

 }
 }

],
 "parameters" : [

 {
 "name" : "board_revision",

 "value" : "2"
 },

 {
 "name" : "http-doc-root",

 "value" : "/home/pi/webiopi/examples/scripts/macros"

 73
T-H-I-N-X - “Thing Server” concept 73

 },
 {

 "name" : "http-welcome-file",
 "value" : "index.html"

 },
 {

 "name" : "coap-multicast",
 "value" : true

 },
 {

 "name" : "http-doc-root",
 "value" : "/home/pi/webiopi/examples/scripts/macros"

 }
],

 "processes" : [
 {

 "process" : {
 "name" : "main",

 "pid" : "1234"
 }

 }
],

 "threads" : [
 {

 "thread" : {

 "ppid" : "1234",
 "tid" : "__MAIN__"

 }
 },

 {
 "thread" : {

 "ppid" : "1234",
 "tid" : "HTTPThread"

 }
 },

 {
 "thread" : {

 "ppid" : "1234",
 "tid" : "COAPThread"

 }
 },

 {
 "thread" : {

 "ppid" : "1234",
 "tid" : "LoopTask_0"

 }
 },

 {

 "thread" : {
 "ppid" : "1234",

 "tid" : "LoopTask_1"
 }

 }
]

 }
 }

],
 "devices" : [

 {
 "device" : {

 "address" : {
 "busType" : "I2C",

 "busId" : "1",
 "deviceId" : "0x48"

 },
 "class" : "TMP275",

 "name" : "temp1",
 "parameters" : [

 {
 "name" : "resolution",

 "value" : 11
 }

],

 "touchpoints" : [
 {

 "touchpoint" : {
 "category" : "sensor",

 "aspect" : "temperature",
 "channel" : null,

 "unit" : "C",

 74
T-H-I-N-X - “Thing Server” concept 74

 "value" : 24.69
 }

 }
]

 }
 },

 {
 "device" : {

 "address" : {
 "busType" : "I2C",

 "busId" : "1",
 "deviceId" : "0x40"

 },
 "class" : "BMP085",

 "name" : "bmp1",
 "parameters" : [

 {
 "name" : "altitude",

 "value" : 150
 },

 {
 "name" : "external",

 "value" : "temp1"
 }

],

 "touchpoints" : [
 {

 "touchpoint" : {
 "category" : "sensor",

 "aspect" : "pressure",
 "channel" : null,

 "unit" : "hPa",
 "value" : 1003.69

 }
 },

 {
 "touchpoint" : {

 "category" : "sensor",
 "aspect" : "pressure",

 "channel" : "sea",
 "unit" : "hPa",

 "value" : 996.91
 }

 },
 {

 "touchpoint" : {
 "category" : "sensor",

 "aspect" : "temperature",

 "channel" : null,
 "unit" : "K",

 "value" : 280.0
 }

 }
]

 }
 },

 {
 "device" : {

 "address" : {
 "busType" : "I2C",

 "busId" : "1",
 "deviceId" : "0x20"

 },
 "class" : "MCP23008",

 "name" : "mcp1",
 "touchpoints" : [

 {
 "touchpoint" : {

 "category" : "digital",
 "aspect" : null,

 "channel" : 0,
 "function" : "out",

 "value" : 1

 }
 },

 {
 "touchpoint" : {

 "category" : "digital",
 "aspect" : null,

 "channel" : 1,

 75
T-H-I-N-X - “Thing Server” concept 75

 "function" : "out",
 "value" : 0

 }
 },

 {
 "touchpoint" : {

 "category" : "digital",
 "aspect" : null,

 "channel" : 2,
 "function" : "in",

 "value" : 1
 }

 },
 {

 "touchpoint" : {
 "category" : "digital",

 "aspect" : null,
 "channel" : 3,

 "function" : "out",
 "value" : 1

 }
 },

 {
 "touchpoint" : {

 "category" : "digital",

 "aspect" : null,
 "channel" : 4,

 "function" : "out",
 "value" : 0

 }
 },

 {
 "touchpoint" : {

 "category" : "digital",
 "aspect" : null,

 "channel" : 5,
 "function" : "in",

 "value" : 1
 }

 },
 {

 "touchpoint" : {
 "category" : "digital",

 "aspect" : null,
 "channel" : 6,

 "function" : "out",
 "value" : 1

 }

 },
 {

 "touchpoint" : {
 "category" : "digital",

 "aspect" : null,
 "channel" : 7,

 "function" : "in",
 "value" : 0

 }
 }

]
 }

 }
],

 "extensions" : [
 {

 "extension" : {
 "name" : "myExtension1"

 }
 },

 {
 "extension" : {

 "arguments" : [
 {

 "arg1" : "myArg1"

 }
],

 "name" : "myExtension2"
 }

 },
 {

 "extension" : {

 76
T-H-I-N-X - “Thing Server” concept 76

 "arguments" : [
 {

 "arg1" : "myArg1"
 },

 {
 "arg2" : "myArg2"

 },
 {

 "arg3" : "myArg3"
 }

],
 "name" : "myExtension3",

 "result" : {
 "class" : "Integer",

 "mime-type" : "text/plain"
 }

 }
 }

],
 "uris" : [

 {
 "uri" : "http://mydomain.local:8000"

 },
 {

 "uri" : "coap://mydomain.local:5683"

 },
 {

 "uri" : "coap://224.0.1.123/5683"
 }

]
 }

 }
}

Remark 1: This just one possible structure, but not the only one. However it is one that tries to cover as much as

possible elements of the resource model.

Remark 2: Some JSON nodes could be simplified. In the version above, “named” JSON objects are used for the 1:n

relations. This can be simplified by omitting those Object “names”, e.g. instead of this solution for “touchpoints:”

(see cursive parts)

 ...
 {

 "device" : {
 "address" : {

 "busId" : "1",
 "busType" : "I2C",

 "slave" : "0x48"
 },

 "class" : "TMP275",

 "name" : "temp1",
 "parameters" : [

 {
 "name" : "resolution",

 "value" : 11
 }

],
 "touchpoints" : [

 {

 "touchpoint" : {

 "category" : "sensor",

 "aspect" : "temperature”,

 "channel" : null,

 "unit" : "c",

 "value" : 24.69

 }

 }

]

 }
 },

 ...

 77
T-H-I-N-X - “Thing Server” concept 77

this one could be used:

 ...
 {

 "device" : {
 "address" : {

 "busId" : "1",
 "busType" : "I2C",

 "slave" : "0x48"
 },

 "class" : "TMP275",
 "name" : "temp1",

 "parameters" : [
 {

 "name" : "resolution",
 "value" : 11

 }

],
 "touchpoints" : [

 {

 "category" : "sensor",

 "aspect" : "temperature”,

 "channel" : null,

 "unit" : "c",

 "value" : 24.69

 }

]

 }
 },

 ...

The JSON structure above is a kind of verbose form as it uses explicit names for the relation sub nodes like

“device” : { ... } for entries in the “devices” list. This can be simplified by omitting the extra JSON node and just

putting entries of JSON objects having the device-slots as keys.

When using the JSON structure above together with a REST API, navigation paths of the resource model like

“ServicePoint -> Device -> TouchPoint” can be addressed via a mapping URI path and the remainder is serialized

to JSON object structures. Ideally the paths from the URI and the nested JSON structure are very similar. 1:n

relations can be mapped to paths by using all identifying slots as parameters leading to the already mentioned

scheme

URI/device/{name}/{category}/{aspect}/{channel}

and by accessing all objects of a 1:n relation with the wildcard “*”

URI/devices/* -> all devices

URI/devices/{deviceName}/* .> all touch points of a device

URI/devices/{deviceName}/{category}/{aspect}/* -> all channels of a touch point of a

device

JSON schema

The JSON structure above can be described formal with the following JSON schema [JSCHEM_2014]:

More text tbd.

Docson reference

jsonschema.net reference

JSON pointers?

 78
T-H-I-N-X - “Thing Server” concept 78

WebIOPi REST API mapping and Python implementation for HTTP and CoAP

Overview

WebIOPi is an Internet of Things framework that has been developed by Eric Ptak. It is implemented in Python

and available from this source in version 0.7.0 [WEBIOPI]. Currently it supports bindings for the HTTP and CoAP

protocol. WebIOPi runs on the Raspberry Pi and allows connecting around 30 types of devices to the web.

Mapping concepts

The primary mapping concepts used in WebIOPi are closely related to the abstract resource model as it is an

abstraction of what was done first with WebIOPi. This means that the six main resource nodes exist, however not

having all the details of them. Additionally, X_Configuration and X_Features are partly implemented with WebIOPi

config file options and Python server methods but they are currently not mapped via REST APIs.

ServicePoint

Three (each optional) URIs exist: One for HTTP and two for CoAP (one like HTTP bound to the local IP address and

another bound on the multicast address “224.0.1.123”). From a ServicePoint can be navigated to Devices, Aliases,

Controller and Extensions. For authentication just “HTTP Basic Authentication” is supported. Encryption is not

available as well as no discoverables, no subscriptions and no events.

The path encoded mappings from the ServicePoint URIs are:

• The root for the REST API is just URI/...

• ServicePoint <-> Device: URI/devices/... with exception for native GPIOs which are direct linked to

URI/GPIO/...

• ServicePoint <-> Alias: Available as user-definable routes but no prefix is used URI/...

• ServicePoint <-> Extension: URI/macros/...

• ServicePoint <->Controller: Some direct paths (e.g. URI/version)

Device

Devices are called devices in WebIOPi so there is a direct 1:1 implementation of this node. Their <names> are

user-defined text strings. They also have a <class> which is defined within the Python device driver class

hierarchy.

Device objects are mapped to the REST API in this way URI/devices/{deviceName}/... with the

exception of native GPIO ports as mentioned above.

Devices implement all of the X_Configuration and X_Features sub node slots, but they are not mapped via the

REST API. They are partly available with WebIOPi config file options and/or Python server calls.

TouchPoint

TouchPoints don’t exist as separate objects in WebIOPi but they are an intrinsic element of the WebIOPi devices.

They are mapped to the REST API in this way:

URI/devices/{deviceName}/{category}/{channel}/{unit}...

 79
T-H-I-N-X - “Thing Server” concept 79

Within this pattern the following rules apply:

• For <category> the variants “analog”, “pwm”, “sensor/temperature”, “sensor/luminosity”, “sensor/distance”

and “sensor/humidity” are available like here:

URI/devices/myLightSensor/sensor/luminosity/.... The direct category “digital” for native

GPIO ports and digital I/O devices is missing. In the case of the driver for the PiFace shield, the categories

“digital/input”, “digital/output” are added and channels with integer numbers are existent.

• <channel> is used with integer numbers starting at 0 for analog and digital I/O devices being multichannel

.../analog/2/.... For native GPIO ports the channel number is the GPIO number of the chip

.../GPIO/17/.... They are also integers but not all integers in the natural sequence are used. In the case

of the pressure sensor an additional channel giving the pressure at sea level has been implemented

.../pressure/sea/.... In this case, the channel is a text string.

• <unit> is used in selected cases with

o (partly abbreviated) physical units for sensors .../sensor/luminosity/lux and

o complete strings of mathematical units for others .../analog/3/float.

• <runnables> are implemented only for native GPIO ports to

o output a single pulse URI/GPIO/17/pulse or

o a bit sequence URI/GPIO/17/sequence/10,01001.

• <function> can be set for native GPIO ports and digital I/O ports. Usage is encoded to the URI path

.../GPIO/17/function/...

<termination> and <parameters> can be partly set via WebIOPi server config file or Python server library calls but

are not mapped to REST API.

Alias

Alias are implemented in the form of logical routes that are defined in the WebIOPi server config file.

Extension

Extensions are called macros in WebIOPi. They are implemented by separate Python source files that are

configured via entries in the WebIOPI server config file. Macro support is very rich, it is possible to use macros

with our without arguments. It is also possible to get the results of macros. The mapping is using this pattern

URI/macros/{macroName}/{macroArguments}. The usage of macroArguments is optional, if more than

one argument is needed, then the arguments are separated by commas

URI/macros/myMacro/1,second,THIRD.

Controller

Naturally, a Controller exists within WebIOPi (this is the running WebIOPi server itself) but it is not explicitly

supported with dedicated resource paths. Only some direct paths exist that provide very basic information as

already mentioned above. Besides the REST API, some slots of the Controller can be set via WebIOPi config file

options. Navigation from the Controller to the Devices is possible with Python server calls.

Miscellaneous

Other important concepts used related to the REST API via HTTP and CoAP are:

• Reading values is mapped to the HTTP/CoAP verb “GET”

 80
T-H-I-N-X - “Thing Server” concept 80

• Writing values is mapped to the HTTP/CoAP verb “POST” with URL-encoded data, no HTTP payload for POST is

used

• The special path component “*” is partly used to be a wildcard when selecting resources like

URI/devices/* which answers all configured devices as JSON list

• HTTP/CoAP results are either “text/plain” or “application/json”. This is fixed for all calls; no way of selecting

the result type is available.

Resources

For the complete mapping of WebIOPi some formal specs and derived representations are available. They are

listed here.

The full API specification based on WADL [WADL_2009; WADL_2014] can be found within the appendices

document [THINX_2014] and here. With the help of a modified XSLT-Stylesheet [WADL_2012] it can be

transformed to a HTML documentation that can be found within the appendices document [THINX_2014] and

here. The WADL specification is also “ApiGee”-augmented so that it can be also used to populate an ApiGee

Console-To-Go [APIGEE_2014].

Additionally, the full API specification based on Swagger [SWA_2014] can be found within the appendices

document [THINX_2014] and here. It can also be used to provide a self-contained WebIOPi-hosted console with

this package that is available here.

 81
T-H-I-N-X - “Thing Server” concept 81

XML mapping and serialization

XML instance

Text tbd.

XML schema

Text tbd.

 82
T-H-I-N-X - “Thing Server” concept 82

WebSockets API usage pattern

Text tbd.

 83
T-H-I-N-X - “Thing Server” concept 83

SOAP API usage pattern

WSDL

XML (rendered) payload

Text tbd.

 84
T-H-I-N-X - “Thing Server” concept 84

MQTT API usage pattern

Text tbd.

 85
T-H-I-N-X - “Thing Server” concept 85

 86
T-H-I-N-X - “Thing Server” concept 86

Relation to openHAB, eclipse smarthome and iot.eclipse.org

openHAB

A Things-Server can be used as binding provider for an openHAB based central control instance. The simplest

possibility is to do this via a HTTP binding. Another possibility may be a CoAP binding but this will have an

openHAB CoAP support as prerequisite which is not available so far.

The natural point for a Things-Server to interact with openHAB is its “Event Bus” and the associated bindings. The

<output> slot of the ServicePoint is related to the state updates of the Event Bus. The <input> slot of the

ServicePoint is related to the commands of the Event Bus.

More text tbd.

eclipse smarthome

Relation to Eclipse Smart Home Gateway initiative

Text tbd.

iot.eclipse.org

Text tbd.

 87
T-H-I-N-X - “Thing Server” concept 87

Relation to IoT targeting public (industrial) initiatives

Initiative EEBUS

Text tbd.

industrial internet CONSORTIUM

Text tbd.

Industrie 4.0

Text tbd.

ALLSEEN ALLIANCE

Text tbd.

 88
T-H-I-N-X - “Thing Server” concept 88

Relation to XPath

Text tbd.

 89
T-H-I-N-X - “Thing Server” concept 89

Relation to OData

[ODATA_2014]

Text tbd.

 90
T-H-I-N-X - “Thing Server” concept 90

Appendices

In order to keep this document small the printout of all referenced resources is gathered in a separate document

[THINX_2014]. These printouts are:

• WADL spec for WebIOPi

• HTML-rendered documentation (excerpts) of WebIOPi REST API

• Swagger 1.2 spec for WebIOPi

• Swagger console (excerpts) of WebIOPi

 91
T-H-I-N-X - “Thing Server” concept 91

References

• [WEBIOPI_2014]: WebIOPi project homepage (http://code.google.com/p/webiopi/)

• [THINXNET_2014]: T-H-I-N-X.NET resources homepage (http://www.t-h-i-n-x.net)

• [THINX_2014]: IoT Model Appendices document

• [IOMOTIX_2014]: iomotix project homepage (http://www.iomotix.com/)

• [GUIN_2011]: PhD thesis of Dominique Guinard (http://www.webofthings.org/dom/thesis.pdf)

• [FIELD_2000]: PhD thesis of Roy Fielding

(https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf)

• [DTREE_2014]: Device Tree specifications (http://www.devicetree.org)

• [JSON_2014]: JSON specification (http://json.org)

• [JSCHEM_2014]: JSON schema specifications and tools (http://json-schema.org)

• [CORE_2014]: Core and CoAP specifications (https://datatracker.ietf.org/wg/core/)

• [ODATA_2014]: OData resources and specifications (http://www.odata.org/)

• [WEBSOCK_2014]: WebSockets specifications (http://www.websocket.org)

• [OHAB_2014]: openHAB project (http://www.openhab.org)

• [OSGI_2014]: OSGi specifications (http://www.osgi.org)

• [ESH_2014]: Eclipse Smart Home project (http://www.eclipse.org/smarthome/)

• [MQTT_2014]: MQTT specifications (http://mqtt.org/)

• [SOAP_2000]: SOAP specifications (http://www.w3.org/2000/xp/Group)

• [WSDL_2001]: WSDL specifications (http://www.w3.org/TR/wsdl)

• [WADL_2014]: WADL infos (http://wadl.java.net/)

• [WADL_2009]: WADL specification (http://www.w3.org/Submission/wadl/)

• [WADL_2012]: WADL.XSL tool (https://github.com/ipcsystems/wadl-stylesheet)

• [APIGEE_2014]: APIGEE Papers and Console-To-Go tool (http://apigee.com/)

• [SWAGGER_2014]: Swagger project (http://github.com/wordnik/swagger-core/wiki)

• [SWAGGER_EDITOR_2015]: Swagger editor online tool (http://editor.swagger.io)

• [SWAGGER.ED_2015]: swagger.ed toolset http://chefarchitect.github.io/swagger.ed/features/apis-json-

support/

• [YAML_2015]: YAML Ain't Markup Language (http://www.yaml.org)

• [SOAPUI_2014]: SoapUI tool (http://www.soapui.org)

• [ARDU_2014]: Arduino platform (http://www.arduino.cc/)

• [RASP_2014]: Raspberry PI product (http://www.raspberrypi.org/)

• [BEAGLE_2014]: Beagle board products (http://beagleboard.org/)

• [EIMP_2014]: Electric Imp product (https://electricimp.com)

• [WEAVED_2015]: Weaved IoT toolkit (http://www.weaved.com/in-action/weaved-iot-kit)

• [XMPP_2014]: XMPP/Jabber (http://wiki.xmpp.org/web/Tech_pages/IoT_systems)

• [EXI_2014]: Efficient XML Interchange (EXI) (http://www.w3.org/TR/exi/)

• [LWM2M_2014]: OMA Lightweight M2M (http://openmobilealliance.hs-sites.com/lightweight-m2m-

specification-from-oma)

• [OPCUA_2015]: OPC Unified Architecture (UA) (https://opcfoundation.org/about/opc-technologies/opc-ua/)

• [ETSIM2M_2015]: ETSI SmartM2M (http://www.etsi.org/technologies-clusters/technologies/m2m)

